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Abstract

The problem of low-frequency sound propagation in slowly varying ducts is systematically analysed as
a perturbation problem of slow variation. The Webster equation and some variants are derived, and the
entrance/exit plane boundary layer is given. It is shown whya varying lined duct in general does not have
a solution.

1 Introduction

Sound of long wavelength, propagating in ducts of varying diameter like horns, is suitably described by
an approximate equation, known as Webster’s horn equation.This is an ordinary differential equation in
the axial co-ordinate, and therefore forms a significant simplification of the problem. The extension of the
multiple scales theory of sound propagation in slowly varying ducts [1, 2] naturally leads to this Webster
equation. We found, however, no systematic derivation of this equation and its variants from the basic
principles of perturbation methods.

The usual derivation is based on the assumption of a crosswise uniform acoustic pressure field, such
that by averaging over a duct cross section the spatial dimensions of the problem are reduced from three to
one.

Although it shows a remarkable evidence of ingenuity and deep physical insight, this derivation is
mathematically not always satisfying. It is not clear (i) what exactly is the small parameter underlying
the approximation, (ii) why the pressure may be assumed to beuniform, (iii) what the error is of the
approximation, (iv) what the conditions are on the duct geometry and on the frequency of the field, (v) how
to generalize to similar problems, (vi) how to generate higher order corrections, and (vii) what happens
near the source or duct entrance or exit plane.

The practical importance of this equation justifies a more systematic approach, making precise under
what conditions the theory is valid, and at the same time showing the way to generalise this equation.

We will consider various cases in detail. First, we show how asystematic approach, known as the
method of slow variation, leads to the classic Webster’s equation for hard-walled ducts.

By itself, the solution of Webster’s equation is not a complete approximation of the prevailing equations
in the duct. Actually, it is the outer solution of a non-uniform asymptotic expansion of the sound field. Near
a source, or an entrance or exit plane, the field has, in terms of the small parameter, axially a boundary layer,
a description of which will be given by an eigenfunction expansion.

Curved ducts, with a curvature radius of no more than the typical length scale of diameter variation,
produce still the same equation.

The same type of analysis can be applied to ducts with lined walls. It is found that at any cross section,
there are only non-trivial solutions possible for certain,geometry dependent, values of the wall impedance.
As these impedance values vary along the duct, there are in general no solutions possible for the full duct.
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We continue with more general analyses of the problem of low frequency sound in a stagnant medium
with slowly varying sound speed, and of sound in an irrotational isentropic mean flow, leading to gener-
alised forms of Webster’s equation.

2 The physical models

2.1 The equations

In the acoustic realm of a perfect gas that we will consider, we have for pressurẽp, velocity ṽ, densityρ̃,
entropys̃, and soundspeed̃c

d
dt ρ̃ = −ρ̃∇· ṽ, ρ̃ d

dt ṽ = −∇ p̃, d
dt s̃ = 0,

s̃ = CV log p̃ − CP log ρ̃, c̃2 =
γ p̃

ρ̃
, γ =

CP

CV
.

(1)

whereγ , CP andCV are gas constants. When we have a stationary mean flow with instationary time-
harmonic perturbations of frequencyω, given, in the usual complex notation, by

ṽ = V + Re(v eiωt ), p̃ = P + Re(p eiωt ), ρ̃ = D + Re(ρ eiωt ), s̃ = S+ Re(seiωt ), (2)

(ω > 0) and linearize for small amplitude, we obtain for the mean flow

∇·(DV ) = 0, D(V ·∇)V = −∇ P,

(V ·∇)S= 0, S = CV log P − CP log D, C2 =
γ P

D

(3)

and the perturbations

iωρ + ∇·(Vρ + vD) = 0 (4a)

D
(
iω + V ·∇

)
v + D

(
v·∇

)
V + ρ(V ·∇)V = −∇ p (4b)

(iω + V ·∇)s + v·∇S= 0 (4c)

while

s =
CV

P
p −

CP

D
ρ =

CV

P

(
p − C2ρ

)
. (4d)

Without mean flow, such thatV = ∇ P = 0, the equations may be reduced to (section 7)

∇·
(
C2∇ p

)
+ ω2p = 0. (5)

If, in addition, the ambient medium is uniform, with a constant soundspeedC and densityD, the acoustic
field becomes isentropic and irrotational and we may introduce a potentialv = ∇φ. Furthermore, equation
(5) reduces to the Helmholtz equation. After introducing the free field wave numberk = ω/C we have
(sections 3, 4, 5, 6)

∇2φ + k2φ = 0. (6)

If the original flow field ṽ is irrotational and isentropic everywhere (homentropic),we can introduce a
potential for the velocity, wherẽv = ∇φ̃, and express̃p as a function of̃ρ only, such that we can integrate
the momentum equation (Bernoulli’s law, with constantE), to obtain for the mean flow

1
2V2 +

C2

γ − 1
= E, ∇·(DV ) = 0,

P

Dγ
= constant (7)



and for the acoustic perturbations
(
iω + V ·∇

)
ρ + ρ∇·V + ∇·

(
D∇φ

)
= 0, D

(
iω + V ·∇

)
φ + p = 0, p = C2ρ. (8)

These last equations are further simplified (eliminatep andρ and use the fact that∇·(DV ) = 0) to the
rather general convected wave equation (section 8)

D−1∇·
(
D∇φ

)
−

(
iω + V ·∇

)[
C−2(iω + V ·∇

)
φ
]

= 0. (9)

2.2 Nondimensionalisation

Without further change of notation, we will assume throughout this paper that the problem is made dimen-
sionless: lengths on a typical duct radius, time on typical sound speed / typical duct radius,etc.

2.3 The geometry

The domain of interest consists of a ductV of arbitrary cross section, slowly varying in axial direction (see
figure 1).

A(εx)

nn⊥

ℓ

v·n = 0

x-axis

r = R(εx, θ)

Figure 1. Sketch of geometry

For definiteness, it is given by the functionS in cylindrical coordinates as follows

S(X, r, θ) = r − R(X, θ) ≤ 0 (10)

whereX = εx > 0 is a so-called slow variable whileε is small. A cross sectionA(X) at X has surface
areaA(X). Whenever relevant2, we assume lengths made dimensionless such that

A(0) = 1.

At the duct surfaceS = 0 the gradient∇S is a vector normal to the surface (i.e., ∇S ∝ n), while the
transverse gradient∇⊥S

∇⊥ = er
∂

∂r
+ eθ

1

r

∂

∂θ
, with ∇⊥S = er − eθ

1

r
Rθ , (11)

(where an index denotes a partial derivative) is directed inthe plane of a cross sectionA(X), and normal
to the duct circumference∂A. So if n⊥ is the component of the surface normal vectorn in the plane of a
cross section, we have∇⊥S ∝ n⊥.

2.4 Frequency

The frequencies considered are low, such that the corresponding typical wave number is of the same order
of magnitude as the length scale of the duct variations,i.e., dimensionlessO(ε−1). In order to quantify
this, we will rescalek = εκ andω = ε�.

2in particular in section 4



3 The classical problem

3.1 Equations and boundary conditions.

The duct is semi-infinite and hard-walled. The solution is determined by a source at entrance planex = 0,
and radiation conditions forx → ∞. Other conditions, like a reflecting impedance plane at someexit
planex = L (e.g.,modelling a radiating open end), are also possible but they do not essentially alter the
present analysis.

InsideV we have for acoustic potentialφ (eq. 6)

∇2φ + ε2κ2φ = 0 if x ∈ V, with ∇φ·n = 0 at x ∈ ∂V. (12)

At the entrance interfacex = 0 we have a suitable boundary condition, say,

φ(0, r, θ) = F(r, θ). (13)

The boundary condition of hard walls atr = R(X, θ) is given by

∇⊥φ·∇⊥S = φr −
Rθ
R2
φθ = εRXφx. (14)

Except for the immediate neighbourhood of the entrance plane, the typical axial variations of the acoustic
field scale on the slow variableX, so we rewrite the equations and boundary conditions

ε2φX X + ∇2
⊥φ + ε2κ2φ = 0, with ∇φ·∇S= −ε2φX RX + ∇⊥φ·∇⊥S= 0 at r = R. (15)

This rewriting in a slow variable is known as the method of slow variation[3]. Note that this equation has
a small parameter multiplied with the highest derivative inX-direction, suggesting a singular perturbation
problem[4, 5, 6] with boundary layers inX.

3.2 Asymptotic analysis: outer solution.

Based on the observation thatε2 is the only small parameter that occurs, we might be tempted to expand
the solution in a Poincaré asymptotic power series inε2. However, this will be shown to be not exactly
true. Depending on the behaviour of the solution near the entrance, the correction term should in general be
O(ε) for matching. The leading and first order equations, however, will be equivalent. With the assumed
Poincaré expansion ofφ, expressed inX,

φ(X, r, θ; ε) = φ0(X, r, θ)+ εφ1(X, r, θ)+ ε2φ1(X, r, θ)+ . . . (16)

we obtain to leading order
∇2

⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0 (17)

with solutionφ0 = a constant. Soφ0 = φ0(X), a function to be determined. To first order we have

∇2
⊥φ1 = 0, with ∇⊥φ1·n⊥ = 0 (18)

also with a constant solution, and soφ1 = φ1(X), a function to be determined. To second order we now
have

∇2
⊥φ2 + φ0,X X + κ2φ0 = 0, with ∇⊥φ2·n⊥ = φ0,X

RRX√
R2 + R2

θ

(19)

The assumption (16) that there exists a Poincaré expansion for φ, expressed in this slow variableX, is not
trivial (Poincaré expansions are critically dependent of the variables chosen!). It requires certain solvability
conditions for,e.g.,φ2, yielding an equation forφ0. To obtain this, we integrate along a cross sectionA(X)
and apply Gauss’ theorem

∫∫

A

∇2
⊥φ2 dσ =

∫

∂A

∇⊥φ2·n⊥ dℓ =

∫

∂A

φ0,X
RRX√

R2 + R2
θ

dℓ = . . .



Then we parametrize∂A with θ , such that dℓ =

√
R2 + R2

θ dθ , and we continue

=

∫ 2π

0
φ0,X RRX dθ = φ0,X

∫ 2π

0
RRX dθ = φ0,X AX. (20)

On the other hand, we also have
∫∫

A

[
φ0,X X + κ2φ0

]
dσ = A

(
φ0,X X + κ2φ0

)
(21)

Altogether we have forφ0 the equation

A−1(Aφ0,X
)

X + κ2φ0 = 0, (22)

which is indeed Webster’s equation[7, 8] in properly scaledcoordinates.
Evidently, the first order solution follows the same patternand satisfies also

A−1(Aφ1,X
)

X + κ2φ1 = 0, (23)

3.3 Solutions of Webster’s equation.

Webster’s equation can be recast into a more transparent form by the transformation[9, 10, 11, 12, 13]

A(X) = d(X)2, φ = d−1ψ, (24)

leading to

ψ ′′ +
(
κ2 −

d′′

d

)
ψ = 0. (25)

Depending on the sign ofκ2 − d′′/d, the solutions behave like propagating or exponentially decaying
waves. Exponential or sinusoidal solutions are readily found for geometries withd′′/d = m2, a constant,
yielding Salmon’s family of horns[9, 10]

d(X) = a emX +be−mX (26)

wherea, b, andm are constants. Ifm → 0 such thata = 1
2(A0 + A1/m) andb = 1

2(A0 − A1/m), the
shape reduces to the conical hornd(X) = A0 + A1X. For b = 0 we have the exponential horn, and if
b = a the catenoidal horn. The parameterm is clearly most important since it determines whether the wave
is propagating (m< κ) or cut-off (m> κ).

3.4 Boundary conditions inX.

The above equation forφ0 andφ1 is of second order and therefore two boundary conditions arerequired
to determine the solution. ForX → ∞ we have the condition of radiation. AtX = 0, φ0 andφ1 cannot
satisfy the(r, θ)-dependent boundary condition (13). Indeed, as anticipated before, nearx = 0 there is
a boundary layer ofX = O(ε), i.e., x = O(1), which determines the (outer) solutionsφ0 andφ1 via
conditions of matching. This will be considered in the next section.

4 Entrance boundary layer

Near the entrance, forX = O(ε), i.e., x = O(1), we have of course equation (12)

∇2φ + ε2κ2φ = 0 if x ∈ V, with ∇⊥φ·n = 0 at x ∈ ∂V. (12)

Up toO(ε2), this Helmholtz equation is equivalent to the Laplace equation. Therefore, the boundary layer
analysis is essentially similar to the one for the heat equation, discussed in Chandra[14]. Expand

φ(X, r, θ; ε) = 80(x, r, θ)+ ε81(x, r, θ)+ O(ε2) (27)



so we have insideV to leading and first order

O(1) : ∇280 = 0, (28a)

O(ε) : ∇281 = 0. (28b)

At x = 0 we have from (13) the initial conditions

80(0, r, θ) = F(r, θ), 81(0, r, θ) = 0. (29)

For x → ∞ conditions of matching with the outer solutionφ0 + εφ1 apply. For the boundary condition at
r = R we have to expandR(εx, θ). Note that for any functionf

f (R(εx); ε) = f (R + εx RX + O(ε2); ε) = f0(R)+ ε
(

f1(R)+ x f0,r (R)RX
)
+ O(ε2) (30)

whereR without any argument denotes the value atX = 0. Furthermore, we have

Rθ (X, θ)

R2(X, θ)
=

Rθ
R2 + εx

( RX

R2

)
θ

+ O(ε2) (31)

So at the boundary

∇⊥φ·∇⊥S = φr −
Rθ
R2
φθ = 80,r −

Rθ
R2
80,θ + ε

[
81,r −

Rθ
R2
81,θ

+ x80,rr RX − x
Rθ
R2

RX80,r θ − x
( RX

R2

)
θ
80,θ

]
= εRX80,x (32)

which means atr = R(0, θ) for the leading and first order

∇⊥80·∇⊥S0 = 80,r −
Rθ
R280,θ = 0, (33a)

∇⊥81·∇⊥S0 = 81,r −
Rθ
R281,θ = RX80,x − x80,rr RX + x

Rθ
R2 RX80,r θ + x

( RX

R2

)
θ
80,θ , (33b)

whereS0 = S(0, r, θ).
It is important for the subsequent matching to note that the solutions of (28) with (33) are only defined

up to a linear termK x. For80, however, this would result in terms ofO(ε−1) if x = O(ε−1) which do
not match with an outer solutionφ0 = O(1). Therefore, we will not include this extra term. For81, on the
other hand, we will have to retain the possibility, and in theend a linear termK1x will be added, whereK1
must be determined by the matching.

From the identity atr = R
d

dθ
80,θ = 80,r θ Rθ +80,θθ , (34)

and with the defining equation applied atr = R while using relation (33a)

−80,rr =
1

R
80,r +

1

R2
80,θθ +80,xx =

Rθ
R3
80,θ +

1

R2
80,θθ +80,xx (35)

it follows that equation (33b) is equivalent to

∇⊥81·∇⊥S0 = Q0(x, θ)
def
== RX80,x

∣∣
r=R +

x

R

{
RRX80,xx

∣∣
r=R +

d

dθ

( RX

R
80,θ

∣∣
r=R

)}
(36)



4.1 Leading order.

The right-running solution80 (only non-increasing exponentials are allowed for matching) may be ex-
pressed by the eigenfunction expansion

80(x) =

∞∑

n=0

Fnψn(r, θ) e−λnx (37)

where
∇2

⊥ψn + λ2
nψn = 0, ∇⊥ψn·∇⊥S0 = 0 (38)

with λ0 = 0,ψ0 is a constant (normalised to 1), the other eigenvaluesλn are real positive, and the eigen-
functionsψn are real, orthogonal and assumed normalized. In general these eigenfunctions are to be
determined numerically. However, if the duct is cylindrical (i.e., Ris independent ofθ ), we have

ψn(r, θ) = Nn Jν
(

j ′νµr/R
)

e±iνθ , ν ∈ N (39)

whereJν is theν-th order ordinary Bessel function of the 1st kind[15], andj ′
νµ is theµ-th (real-valued,

positive) zero ofJ ′
ν , ordered such that they are monotonically increasing.Nn is a normalisation constant,

and the corresponding eigenvalue is of courseλn = j ′νµ/R.
The amplitudes are determined from the entrance interfacex = 0 as follows

Fn =

∫∫

A(0)
F(r, θ)ψn(r, θ) dσ. (40)

Note that, asψn are orthonormal, the axial flux is to leading order proportional to the imaginary part of

∫ 2π

0

∫ R

0
808

∗
0,xr dr dθ = −

∞∑

n=1

λn|Fn|2 e−2λnx . (41)

As this expression is real, its imaginary part is zero and, thus, the axial flux vanishes to leading order.
Indeed, the outer solution is a slowly varying function ofX and therefore the flux, proportional to the axial
derivative, isO(ε).

For x → ∞, the exponential terms in80(x) vanish and we have

80(x) ≃ F0. (42)

4.2 1st Order.

Q0, the right hand side of equation (36), may be written as

Q0(x, θ) =

∞∑

n=1

Fn e−λnx
[
−RXλnψn

∣∣
r=R + x RXλ

2
nψn

∣∣
r=R +

x

R

d

dθ

( RX

R
ψn,θ

∣∣
r=R

)]

= R−1
∞∑

n=1

Fn

[
−λnRRX

(
x e−λnx)

xψn
∣∣
r=R + x e−λnx d

dθ

( RX

R
ψn,θ

∣∣
r=R

)]
(43)

To solve the problem for81, we introduce a Green’s functionG(x; ξ) with x = (x, r, θ) andξ = (ξ, ρ, η)

satisfying

∇2
⊥G + ∂2

∂x2 G = −δ(x − ξ ),

∂
∂n G = 0 at r = R(0, θ),

G(x; ξ) = 0 at x = 0.

G(x; ξ) → a constant, x → ∞.

x ∂
∂x G(x; ξ) → 0, x → ∞.





(44)



We determine the Green’s function by applying the Fourier Sine Transform3 with respect tox (x → α) to
(44), to obtain

∇2
⊥Ĝ − α2Ĝ = −

√
2

π
sin(αξ)δ(x⊥ − ξ⊥). (45)

wherex⊥ denotes the transverse component ofx, i.e., x⊥ = (r, θ) (similarly for ξ⊥). We assume that the
Green’s function can be expanded by the same basis function as has been used for80

Ĝ(α, r, θ; ξ ) =

∞∑

m=0

am(α, ξ )ψm(r, θ).

Therefore

∇2Ĝ = −

∞∑

m=0

amλ
2
mψm(r, θ).

Substituting this into (45) yields

∞∑

m=0

amψm(λ
2
m + α2) =

√
2

π
sin(αξ)δ(x⊥ − ξ⊥). (46)

Next, we multiply (46) withψn and integrate over the cross sectionA(0) to obtain

∫∫

A(0)

∞∑

m=0

amψnψm(λ
2
m + α2) dσ =

√
2

π

∫∫

A(0)

ψn(r, θ) sin(αξ)δ(x⊥ − ξ⊥) dσ. (47)

Orthonormality of the basis functions yields

am =

√
2

π

sin(αξ)

λ2
m + α2

ψm(ρ, η). (48)

Therefore,

Ĝ(α, r, θ; ξ, ρ, η) =

√
2

π

∞∑

m=0

sin(αξ)

λ2
m + α2

ψm(ρ, η)ψm(r, θ). (49)

The inverse Fourier Sine Transform yields

G(x; ξ) =
2

π

∞∑

m=0

ψm(ρ, η)ψm(r, θ)
∫ ∞

0

sin(αx) sin(αξ)

λ2
m + α2

dα, (50)

where[15] forλ0 = 0 ∫ ∞

0

sin(αx) sin(αξ)

α2
dα = 1

2π min(x, ξ), (51)

and forλm > 0,
∫ ∞

0

sin(αx) sin(αξ)

λ2
m + α2

dα = 1
2π e−λm max(x,ξ ) 1

λm
sinh(λm min(x, ξ)). (52)

Therefore, the Green’s function becomes

G(x; ξ) = x +

∞∑

m=1

ψm(ρ, η)ψm(r, θ) e−λmξ
sinh(λmx)

λm
if 0 ≤ x ≤ ξ, (53a)

= ξ +

∞∑

m=1

ψm(ρ, η)ψm(r, θ) e−λmx sinh(λmξ)

λm
if 0 ≤ ξ ≤ x. (53b)

3where f̂ (α) =

√
2
π

∫ ∞
0 sin(αx) f (x) dx, f (x) =

√
2
π

∫ ∞
0 sin(αx) f̂ (α) dα.



Note that asx → ∞, G tends toξ and ∂G
∂x tends to zero exponentially.

Using this Green’s function, we obtain for81 the following relation, to be integrated over domainV,

81δ(x − ξ ) = G∇281 −81∇
2G. (54)

However, since81 ∼ K1ξ for largeξ (see the remark below equations 33), this yields a divergentintegral
as the domain here is a semi-infinite duct. Therefore, we consider a regionV ′ with a finite length 0≤ x ≤

x0, wherex0 is small compared toε−1, but large enough for all exponential terms to practically vanish.
Integrate (54) along domainV ′ and by using Green’s second identity we get

81(ξ ) =

∫∫∫

V ′

(G181 −811G) dx =

∫∫

x=0

(
−G

∂81

∂x
+81

∂G

∂x

)
dσ

+

∫∫

r=R(0,η)

(G∇⊥81 −81∇⊥G) ·n⊥ dσ +

∫∫

x=x0

(
G
∂81

∂x
−81

∂G

∂x

)
dσ

=

∫∫

r=R(0,η)

GQ0(x, θ)

|∇⊥S|
dℓdξ + K1ξ. (55)

Since|∇⊥S| = 1
R

√
R2 + R2

θ and dℓ =

√
R2 + R2

θ dθ , we obtain

81(ξ ) =

∫ 2π

0

∫ ∞

0
Q0(x, θ)G(x; ξ)|r=RRdxdθ + K1ξ. (56)

As we haveQ0 in the form of a series expansion, we can write

81(ξ) = K1ξ +

∞∑

n=1

Fn

∫ 2π

0

[
−RRXλnψn

∣∣
r=R

∫ ∞

0
e−λnx G(x; ξ)

∣∣
r=R dx

+

{
RRXλ

2
nψn

∣∣
r=R +

d

dθ

( RX

R
ψn,θ

∣∣
r=R

)}∫ ∞

0
x e−λnx G(x; ξ )

∣∣
r=R dx

]
dθ (57)

It may be noted that the normal derivative of this series doesnot converge uniformly near the wall. For all
basis functions,∇⊥ψn·n⊥ = 0, whereas∇⊥81·n⊥ 6= 0.

Finally, we remove thex-integration by
∫ ∞

0
e−λnx G(x; ξ)

∣∣∣
r=R

dx =
1 − e−λnξ

λ2
n

−

∞∑

m=1

ψm(R, θ)ψm(ρ, η)
e−λnξ − e−λmξ

λ2
n − λ2

m
, (58)

∫ ∞

0
x e−λnx G(x; ξ )

∣∣∣
r=R

dx =
2 − (2 + λnξ) e−λnξ

λ3
n

−

∞∑

m=1

ψm(R, θ)ψm(ρ, η)
2λn(e−λnξ − e−λmξ )+ ξ(λ2

n − λ2
m) e−λnξ

(λ2
n − λ2

m)
2

. (59)

If m = n, the limitλm → λn should be taken.
For x → ∞, the exponential terms in81(x) vanish and we have (we exchange the variablesx andξ )

81(x) ≃ K1x +

∞∑

n=1

Fn

∫ 2π

0

[
RRXλ

−1
n ψn

∣∣
ρ=R +

2

λn

d

dη

( RX

R
ψn,η

∣∣
ρ=R

)]
dη

By using the periodicity ofψn in its circumferential argumentη, we have finally

81(x) ≃ K1x +

∞∑

n=1

Fn

λn

∫ 2π

0
RRXψn

∣∣
ρ=Rdη (60)



4.3 Matching.

Both the initial conditions forφ0 andφ1 and the constantK1 are determined from matching with the outer
solution. From equations (42) and (60) we have

φ0(0)+ Xφ0,X(0)+ εφ1(0) ∼ F0 + εK1x + ε

∞∑

n=1

Fn

λn

∫ 2π

0
RRXψn

∣∣
ρ=Rdη (61)

and so we find
φ0(0) = F0

K1 = φ0,X(0)

φ1(0) =

∞∑

n=1

Fn

λn

∫ 2π

0
RRXψn

∣∣
ρ=Rdη





(62)

5 Curved ducts

The present results remain valid for the slightly more general problem of curved ducts (like certain musical
instruments) if the curvature of the duct axis (and its derivative) isO(ε). Together with the assumed slow
variation in the axial coordinate, the associated orthogonal coordinate system (based on the tangent and –
possibly– the normal and binormal of the curve that describes the duct axis) leave the Laplacian unchanged
up toO(ε3).

A simple example is the inside of a perturbed torus, described by a fixed torus radiusε−1 and slowly
varying tube radiusR. With local (polar-type) coordinatesξ, r, ϕ, we define

x = ε−1(1 + εr cosθ) cos(εξ),

y =ε−1(1 + εr cosθ) sin(εξ), z = r sinθ,
(63)

where 0≤ r ≤ R(εξ, θ), 0 ≤ θ < 2π , 0 ≤ εξ < 2π . If we write X = εξ , we get (cf. equation 6)

∇2φ + ε2κ2φ

= ∇2
⊥φ + ε2(1 + εr cosθ

)−2 ∂2

∂X2φ + ε
(
1 + εr cosθ

)−1[cosθ ∂
∂r φ − 1

r
∂
∂θ
φ
]
+ ε2κ2φ = 0. (64)

Boundary conditions atS= r − R(X, θ) = 0 are

∇⊥φ·∇⊥S−
ε2RXφX

(1 + εr cosθ)2
= 0. (65)

If we expandφ = φ0 + εφ1 + ε2φ2 + . . ., we get to leading order

∇2
⊥φ0 = 0,∇⊥φ0·n⊥ = 0, (66)

soφ0 = φ0(X). Then ∂
∂r φ0 = ∂

∂θ
φ0 = 0 and we have also

∇2
⊥φ1 = 0,∇⊥φ1·n⊥ = 0, (67)

leading toφ1 = φ1(X). So again∂
∂r φ1 = ∂

∂θ
φ1 = 0 and we obtain again

∇2
⊥φ2 + φ0,X X + κ2φ0 = 0, with ∇⊥φ2·∇⊥S = φ0,X RX,

yielding thus, after a similar argument as before, Webster’s equation.



6 Impedance walls

If the duct walls is equipped with an impedance-type acoustic lining, we will in general expect solutions,
which will decay exponentially in axial direction. Therefore, in the compressed variableX, only trivial (i.e.,
zero) solutions will exist. We will see that this is by and large the case, although for a purely imaginary
impedance in a straight duct there are exceptions.

The impedance-wall boundary condition atr = R is given by

∇φ·n = −
iεκ

Z
φ = ζφ (68)

with specific impedanceZ. As before, we assume the Poincaré expansionφ = φ0 + εφ1 + ε2φ2 + . . ..
First we note that it is easily verified, that ifZ = 0 only the trivial solutionsφ0 = φ1 = 0 occur. Then we
consider two possibilities:Z = O(1) andZ = O(ε).

6.1 Z = O(1)

As ζ = O(ε), we write ζ = εζ1. In this case we have only trivial solutions. Expand equations and
boundary conditions as before, to get to leading order

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0 (69)

with solutionφ0 = φ0(X), a function to be determined. To first order we have

∇2
⊥φ1 = 0, with ∇⊥φ1·n⊥ = ζ1φ0. (70)

Since ∫∫

A

∇2
⊥φ1 dσ = ζ1φ0

∫

∂A

dℓ = 0 (71)

we must haveφ0 = 0, and soφ1 = φ1(X). Nothing changes when we continue, and so all terms of the
expansion vanish.

6.2 Z = O(ε)

Now we haveζ = O(1), which changes the boundary condition expansion. To leading order we have

∇2φ0 = 0 in A, with ∇φ0·n = ζφ0 at ∂A. (72)

This is an eigenvalue problem for the Dirichlet-to-Neumannoperator[14]N : f 7→ g, that maps a given
Dirichlet boundary valuef to the normal derivativeg of f ’s harmonic extension intoA. In other words,
N ( f ) = ∂

∂nψ
∣∣
∂A

whereψ is the solution of

∇2ψ = 0 in A, with ψ = f at ∂A. (73)

As we are looking forN (φ0) = ζφ0, equation (72) corresponds to the eigenvalue problem ofN .
From Green’s 2nd identity, applied toφ0 and its complex conjugate, it can be deduced that any possible

ζ is real. Furthermore, from Green’s 1st identity applied toφ0 it follows that any possibleζ is positive, and
Z is thus negative imaginary. From general operator-theoretical considerations it may be deduced from the
boundedness of∂A, that the eigenvaluesζ are discrete.

An example that illustrates this behaviour explicitly is the circular ductR = 1, where

φ0 = r m e±imθ , with ζ = m> 0. (74)

As the shape of the cross sectionA(X) changes withX, the values ofζ that allow a solution also
change withX, and in general there are no solutions possible along the duct for a fixed, givenζ .



This is of course not true for a duct of constant cross section, and we will show here how in this case
the low-frequency solution can be found. Note that this solution is just the unattenuated surface wave,
considered in Rienstra[17].

As we saw,ζ cannot be prescribed because it is an eigenvalue, and therefore essentially part of the
solution that depends onε. So we have to writeζ(ε) and expand

ζ(ε) = ζ0 + εζ1 + ε2ζ2 + . . . (75)

As before in equation (72), we have to leading order the eigenvalue problem

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = ζ0φ0, (76)

with the pair(φ0, ζ0) as the solution. Then, to first order, we have

∇2
⊥φ1 = 0, with ∇⊥φ1·n⊥ = ζ0φ1 + ζ1φ0. (77)

By applying Green’s 2nd identity toφ1 andφ0 we get
∫∫

A

φ0∇
2
⊥φ1 − φ1∇

2
⊥φ0 dσ = ζ1

∫

∂A

φ2
0 dℓ = 0. (78)

Soζ1 = 0 andφ1 ∝ φ0. To second order we have (note that nowRX = 0)

∇2
⊥φ2 + κ2φ0 = 0, with ∇⊥φ2·n⊥ = ζ0φ2 + ζ2φ0. (79)

Similar to above, we find the solvability condition to be
∫∫

A

φ0∇
2
⊥φ2 − φ2∇

2
⊥φ0 dσ + κ2

∫∫

A

φ2
0 dσ = ζ2

∫

∂A

φ2
0 dℓ+ κ2

∫∫

A

φ2
0 dσ = 0 (80)

yieldingζ2 expressed inκ2 and integrals ofφ2
0.

7 Variable mean soundspeed and density

If soundspeedC = C(X, r, θ) and mean densityD = D(X, r, θ) are not uniformly constant, but vary inr ,
θ and slowly inx, we have the reduced wave equation (5), rewritten in slowly varying coordinates,

ε2 ∂
∂X

(
C2 pX

)
+ ∇⊥·

(
C2∇⊥ p

)
+ ε2�2p = 0, (81)

where the dimensionless frequencyω = ε� is small. The hard-wall boundary condition is the same as
equation (14). When we expandp = p0 + εp1 + ε2 p2 . . ., we get to leading order

∇⊥·
(
C2∇⊥ p0

)
= 0, with ∇⊥ p0·n⊥ = 0, (82)

which has a constant as the solution, sop0 = p0(X), a function to be determined. We can derive the same
equation forp1, to get the same resultφ1 = φ1(X). For the second order we have

∇⊥·
(
C2∇⊥ p2

)
+ ∂

∂X

(
C2 p0,X

)
+�2p0 = 0, with ∇⊥ p2·n⊥ = p0,X

RRX√
R2 + R2

θ

. (83)

We go on to find a solvability condition forp2 by integrating this equation along a cross sectionA. Utilizing
the following identity for any differentiable functionf

d

dX

∫∫

A

f (X) dσ =
d

dX

∫ 2π

0

∫ R

0
f (X, r, θ)r dr θ =

∫ 2π

0

∫ R

0
fXr dr dθ +

∫ 2π

0
f (X, R, θ)RRX dθ, (84)



we have
∫∫

A

∇⊥·(C2∇⊥ p2) dσ = p0,X

∫ 2π

0
C2RRXdθ = p0,X

[
d

dX

∫∫

A

C2 dσ −

∫∫

A

∂
∂X C2 dσ

]
. (85a)

Furthermore, we have
∫∫

A

∂
∂X

(
C2 p0,X

)
dσ = p0,X

∫∫

A

∂
∂X C2 dσ + p0,X X

∫∫

A

C2 dσ, and
∫∫

A

�2p0 dσ = �2p0A. (85b)

Then, after introducing the cross-sectional averaged squared sound speed

C2 =
1

A

∫∫

A

C2 dσ, (86)

a generalisation of Webster’s equation is obtained

A−1(AC2 p0,X
)

X +�2 p0 = 0. (87)

This may be further simplified by the transformation

A(X)C2(X) = d(X)2, p0 = d−1ψ (88)

into

ψ ′′ +
(�2

C2
−

d′′

d

)
ψ = 0. (89)

8 Irrotational and isentropic mean flow

To analyse asymptotically low frequency acoustic perturbations in a slowly varying duct with an irrotational
isentropic mean flow, as described by equations (7) and (9), we need to approximate both mean flow and
acoustic field to the same order of accuracy.

We start here with the mean flow. In the dimensionless variables used, we haveC2 = Dγ−1, so
equations (7) simplify to

1
2V2 +

Dγ−1

γ − 1
= E, ∇·(DV ) = 0. (90)

The mass flux at any cross sectionA is given by
∫∫

A

DU dσ = F . (91)

Due to the non-dimensionalisation,U , D, A, F andE areO(1). Introduce the slow variableX = εx, and
assumeV andD to depend essentially onX, rather thanx. We write the velocity as

V = U ex + V⊥ (92)

to distinguish between axial and cross-wise components. Ifflux F and thermodynamical constantE are
independent ofε, we can expandU = U0+O(ε2) andD = D0+O(ε2). As the flow is a potential flow, we
can derive, in the same way as in Rienstra[1], thatD0 = D0(X), U0 = U0(X) andV⊥ = O(ε), satisfying
the equations (to be solved numerically)

D0U0A = F ,
F

2

2D2
0 A2

+
Dγ−1

0

γ − 1
= E. (93)

We write V⊥ = εṼ⊥.



Next we consider the acoustic field. Using the above results for the mean flow, equation (9) becomes

∇2
⊥φ + ε2D−1

0

(
D0φX

)
X = ε2

(
i�+ U0

∂
∂X + Ṽ⊥·∇⊥

)[
C−2

0

(
i�+ U0

∂
∂X + Ṽ⊥·∇⊥

)
φ
]

with hard wall boundary condition
∇φ·n = 0 at r = R.

We expandφ = φ0 + εφ1 + ε2φ2 + . . . . To leading order we have

∇2
⊥φ0 = 0, ∇⊥φ0·n⊥ = 0 (94)

yielding the constant solution,i.e.,φ0 = φ0(X).
To first order we have the same equation. To second order we have

∇2
⊥φ2 + D−1

0

(
D0φ0,X

)
X =

(
i�+ U0

∂
∂X + Ṽ⊥·∇⊥

)[
C−2

0

(
i�+ U0

∂
∂X + Ṽ⊥·∇⊥

)
φ0

]

with boundary conditions given by equation (19). After integration across a cross sectionA(X), we obtain,
similar to before, the Webster equation generalised for irrotational isentropic mean flow

(D0A)−1(D0Aφ0,X)X =
(
i�+ U0

∂
∂X

)[
C−2

0

(
i�+ U0

∂
∂X

)
φ0

]
. (95)

Note that this equation seems to be equivalent to the set given by Pierce[13, p. 422] apart from a factor1
2.

8.1 Mean flow with impedance walls.

The problem with mean flow and an impedance wall is more intricate. Instead of the duct wall boundary
condition given in equation (68), we have Myers’ condition[18], rewritten according to Eversman[19], as
follows

iωD
(
v·n

)
=

iωDp

Z
+

d

dτ

( DVτ p

Z

)
. (96)

Vτ denotes the component of the mean flow vector tangential to the duct wall andτ denotes the tangen-
tial coordinate in that direction. The following identity,obtained from the path of a particle following a
streamline along the wall,

d

dτ
=

dt

dτ

dx

dt

d

dx
= ε

U

Vτ

d

dX
(97)

can be used to further simplify the boundary condition (we introduce our notation)

i�D
(
∇φ·n

)
=

1

Vτ

(
i�+ U d

dX

)( DVτ p

Z

)
. (98)

We note thatp = O(ε) if φ = O(1) since along the wall

p = −εD
(
i�+ U d

dX

)
φ. (99)

If we consider the caseZ = O(1), and expandφ = φ0 + εφ1 + . . ., we get to leading order, as before,

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0,

soφ0 = φ0(X). To first order we have the same equation∇2
⊥φ1 = 0 for φ1. With Vτ = U0 + O(ε2), the

boundary condition is now

i�D0U0
(
∇⊥φ1·n⊥

)
=

(
i�+ U0

d
dX

)( D0U0 p0

Z

)
. (100)

From ∫∫

A

∇2
⊥φ1 dσ =

∫

∂A

∇⊥φ1·n⊥ dℓ = 0,

together with equation (100), it follows that possible solutions are given byp0(X) ≡ 0, i.e., purely con-
vected perturbations.



9 Conclusions

Webster’s classic horn equation and some generalisations have been (re)derived systematically, as an
asymptotic perturbation problem, from a number of modelling assumptions by the method of slow varia-
tion. The conditions on frequency, medium and geometry are explicitly indicated. The error and higher
order corrections are also explicitly stated. The presenceof lining is shown to allow in general only the
trivial solution. A curved duct is shown to produce the same equation if the radius of curvature is not
smaller than the typical wave length or duct length scale. The approximation is non-uniform near source
or entrance. The prevailing boundary layer solution for an arbitrary duct cross section is given.
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