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Abstract

The problem of low-frequency sound propagation in slowlyyireg ducts is systematically analysed as
a perturbation problem of slow variation. The Webster eigmaand some variants are derived, and the
entrance/exit plane boundary layer is given. It is shown wivarying lined duct in general does not have
a solution.

1 Introduction

Sound of long wavelength, propagating in ducts of varyirentiter like horns, is suitably described by
an approximate equation, known as Webster’'s horn equalibis is an ordinary differential equation in
the axial co-ordinate, and therefore forms a significanpéifimation of the problem. The extension of the
multiple scales theory of sound propagation in slowly vagyilucts [1, 2] naturally leads to this Webster
equation. We found, however, no systematic derivation & ¢lguation and its variants from the basic
principles of perturbation methods.

The usual derivation is based on the assumption of a crosawigorm acoustic pressure field, such
that by averaging over a duct cross section the spatial difoes of the problem are reduced from three to
one.

Although it shows a remarkable evidence of ingenuity andodaieysical insight, this derivation is
mathematically not always satisfying. It is not clear (i) attexactly is the small parameter underlying
the approximation, (ii) why the pressure may be assumed tarfferm, (iii) what the error is of the
approximation, (iv) what the conditions are on the duct getsynrand on the frequency of the field, (v) how
to generalize to similar problems, (vi) how to generate brgbrder corrections, and (vii) what happens
near the source or duct entrance or exit plane.

The practical importance of this equation justifies a mogeyatic approach, making precise under
what conditions the theory is valid, and at the same time stpthe way to generalise this equation.

We will consider various cases in detail. First, we show hosystematic approach, known as the
method of slow variation, leads to the classic Webster'saéqn for hard-walled ducts.

By itself, the solution of Webster’s equation is not a congbgproximation of the prevailing equations
in the duct. Actually, itis the outer solution of a non-unmifoasymptotic expansion of the sound field. Near
a source, or an entrance or exit plane, the field has, in tefthe small parameter, axially a boundary layer,
a description of which will be given by an eigenfunction expian.

Curved ducts, with a curvature radius of no more than thecgldength scale of diameter variation,
produce still the same equation.

The same type of analysis can be applied to ducts with linéid wais found that at any cross section,
there are only non-trivial solutions possible for cert@japmetry dependent, values of the wall impedance.
As these impedance values vary along the duct, there arengrgleno solutions possible for the full duct.
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We continue with more general analyses of the problem of legdency sound in a stagnant medium
with slowly varying sound speed, and of sound in an irrotaidsentropic mean flow, leading to gener-
alised forms of Webster’s equation.

2 The physical models

2.1 The equations

In the acoustic realm of a perfect gas that we will considerhave for pressurp, velocity v, densityp,
entropys, and soundspeet

Gp=—pV-D. Fgi=-Vp §5=0.
~ C 1
s=Cylogp—Cplogp, =12 = =P @
o Cv

wherey, Cp andCy are gas constants. When we have a stationary mean flow withtiovsary time-
harmonic perturbations of frequengy given, in the usual complex notation, by

?=V +Rewe), p=P +Re(pe”), 5 =D +Re(pe”), §= S+ Re(se®!), 2)

(w > 0) and linearize for small amplitude, we obtain for the meawfl

V-(DV)=0, D(V:V)V =—VP,

P 3)
(V+V)S=0, S=CylogP —CplogD, C?= o
and the perturbations
iwp+V-(Vp+vD)=0 (4a)
D(iw+V - V)o+D(v-V)V +p(V V)V =—-Vp (4b)
(io+V-V)s+v-VS=0 (4c)
while c c c
v P v 2
s=5P-5r="5(P-C%) (4d)
Without mean flow, such that = VP = 0, the equations may be reduced to (section 7)
V- (C?Vp) + w’p = 0. (5)

If, in addition, the ambient medium is uniform, with a comgtaoundspee@ and densityD, the acoustic
field becomes isentropic and irrotational and we may intoedupotentiab = V¢. Furthermore, equation
(5) reduces to the Helmholtz equation. After introducing free field wave numbéc = »/C we have
(sections 3, 4, 5, 6)

V2 + k%¢ = 0. (6)

If the original flow field v is irrotational and isentropic everywhere (homentropieg, can introduce a
potential for the velocity, wheré = V¢, and expres$ as a function of only, such that we can integrate
the momentum equation (Bernoulli's law, with constant to obtain for the mean flow

ly2 4 c =E, V-(DV)=0 P = constant (7)
2 y—1_ " - Dr




and for the acoustic perturbations
(iw+V+V)p+pV-V +V-(DV$) =0, D(iw+V:V)p+p=0, p=C?. (8)

These last equations are further simplified (eliminptandp and use the fact that- (DV) = 0) to the
rather general convected wave equation (section 8)

DV-(DV9) — (i + V -V)[C2(iw + V- V)] = 0. )

2.2 Nondimensionalisation

Without further change of notation, we will assume througithis paper that the problem is made dimen-
sionless: lengths on a typical duct radius, time on typioahsl speed / typical duct radiusc.

2.3 The geometry

The domain of interest consists of a dotbf arbitrary cross section, slowly varying in axial direxii(see
figure 1).

!

X-axis

r = R(ex, 0)

Figure 1. Sketch of geometry

For definiteness, it is given by the functi&in cylindrical coordinates as follows
S(X,r,0)=r —R(X,0) <0 (10)

whereX = ¢x > 0 is a so-called slow variable whikeis small. A cross sectiom(X) at X has surface
areaA(X). Whenever relevaAt we assume lengths made dimensionless such that

A©) = 1.

At the duct surfaces = 0 the gradientVSis a vector normal to the surfaceg, VS « n), while the
transverse gradient; S

ad 19 1
Vi=6g— ——, with V,S=& — & -Ry, 11
L=a -t i & eerRe (11)
(where an index denotes a partial derivative) is directetthénplane of a cross sectiof(X), and normal
to the duct circumferencé4. So if n; is the component of the surface normal veatan the plane of a
cross section, we hawe, S n; .

2.4 Frequency

The frequencies considered are low, such that the correlspgtypical wave number is of the same order
of magnitude as the length scale of the duct variatioes,dimensionlesg (¢ 1). In order to quantify
this, we will rescal&k = ex andw = Q.

2in particular in section 4



3 The classical problem

3.1 Equations and boundary conditions.

The duct is semi-infinite and hard-walled. The solution isedmined by a source at entrance plane 0,
and radiation conditions fax — oo. Other conditions, like a reflecting impedance plane at serie
planex = L (e.g.,modelling a radiating open end), are also possible but tlveyad essentially alter the
present analysis.

Inside’V we have for acoustic potential (eq. 6)

V2 +e%%p =0 if x €V, with Vgp-n=0 at x € V. (12)
At the entrance interface = 0 we have a suitable boundary condition, say,
¢O,r,0) = F(r,0). 13)

The boundary condition of hard wallsrat= R(X, 0) is given by

Vig-VIS=¢ — %% = ¢ Rx¢x. (14)

Except for the immediate neighbourhood of the entranceepldre typical axial variations of the acoustic
field scale on the slow variabl¢, so we rewrite the equations and boundary conditions

e2pxx + V20 + e2%2%p =0, with V¢ VS= —e2pxRx + V. ¢-V.S=0 atr = R.  (15)

This rewriting in a slow variable is known as the method ofisi@riation[3]. Note that this equation has
a small parameter multiplied with the highest derivative<idirection, suggesting a singular perturbation
problem[4, 5, 6] with boundary layers .

3.2 Asymptotic analysis: outer solution.

Based on the observation thgtis the only small parameter that occurs, we might be temptekpand
the solution in a Poincaré asymptotic power series?nHowever, this will be shown to be not exactly
true. Depending on the behaviour of the solution near theaeog, the correction term should in general be
O (¢) for matching. The leading and first order equations, howev#rbe equivalent. With the assumed
Poincaré expansion gf, expressed iiX,

HX, 1,05 8) = do(X,1,0) + (X, T,0) + e2p1(X,1,0) + ... (16)

we obtain to leading order
V2¢o =0, with Vi ¢g-n. =0 17)

with solutiongg = a constant. S¢o = ¢o(X), a function to be determined. To first order we have
qub]_ =0, with Vi¢1:n. =0 (18)
also with a constant solution, and 9 = ¢1(X), a function to be determined. To second order we now

have
RRx

The assumption (16) that there exists a Poincaré expansign éxpressed in this slow variab} is not
trivial (Poincaré expansions are critically dependenhefiariables chosen!). It requires certain solvability
conditions fore.g.,¢2, yielding an equation fapg. To obtain this, we integrate along a cross secid(ix)
and apply Gauss’ theorem

V202 + go.xx +k%po =0, with Vigo+n, = o x (19)

RRx

V2¢2d6=/ Vige:nidt = | ¢ox——=0dl =...
//,A, * oA A /R2+R§



Then we parametrizé with 6, such thatd = ,/ R? + Rg do, and we continue
2

21
-/ ¢o,xRRxde:¢o,x/0 RRx df = do.x Ax. (20)

On the other hand, we also have

f/ [#o.x x + k0] do = A(do xx + «>po) (21)
A
Altogether we have fogg the equation

A~Y(Agox)y + K%po =0, (22)

which is indeed Webster's equation[7, 8] in properly scaledrdinates.
Evidently, the first order solution follows the same pattend satisfies also

AT (AdLx)y + 1%h1 =0, (23)

3.3 Solutions of Webster’s equation.
Webster’s equation can be recast into a more transparentlfgthe transformation[9, 10, 11, 12, 13]
A) =d(X)? ¢ =d 7y, (24)
leading to
"

yn (KZ . %)w —0 (25)

Depending on the sign of?2 — d”/d, the solutions behave like propagating or exponentiallyagiing
waves. Exponential or sinusoidal solutions are readilyntbfor geometries witll” /d = m?, a constant,
yielding Salmon’s family of horns[9, 10]

d(X) =ae™ +hbe M (26)

wherea, b, andm are constants. Inh — 0 such that = %(Ao + A1/m) andb = %(Ao — A1/m), the
shape reduces to the conical hat(X) = Ag + A1 X. Forb = 0 we have the exponential horn, and if
b = athe catenoidal horn. The parameters clearly most important since it determines whether theava
is propagatingr < «) or cut-off (m > «).

3.4 Boundary conditions in X.

The above equation fatp and¢1 is of second order and therefore two boundary conditionsexaired
to determine the solution. FOt — oo we have the condition of radiation. At = 0, ¢p and¢, cannot
satisfy the(r, 6)-dependent boundary condition (13). Indeed, as antiaiplgdore, neax = 0 there is
a boundary layer oX = 0(¢), i.e., x = O(1), which determines the (outer) solutiops and ¢1 via
conditions of matching. This will be considered in the nedt®on.

4 Entrance boundary layer

Near the entrance, foX = @ (¢), i.e., x= @ (1), we have of course equation (12)
V2 +e%2p=01if xeV, with Vi¢-n=0 atxeaV. (12)

Up to 9 (£2), this Helmholtz equation is equivalent to the Laplace eiquafTherefore, the boundary layer
analysis is essentially similar to the one for the heat égnadliscussed in Chandra[14]. Expand

H(X, 1,05 8) = Do(X, T, 0) + eD1(X, T, 0) + O(?) (27)



so we have insid® to leading and first order

Ol): V2dy=0, (28a)
O(): V2@, =0. (28b)

At x = 0 we have from (13) the initial conditions
Do(0,1,0) = F(r,0), ®1(0,r,0)=0. (29)

Forx — oo conditions of matching with the outer solutigg + £¢1 apply. For the boundary condition at
r = Rwe have to expan®(ex, 0). Note that for any functiorf

f(R(ex); &) = F(R+exRx + O(%); &) = fo(R) + &(f1(R) + xfor (R)Rx) + O(e?)  (30)
whereR without any argument denotes the valueXat 0. Furthermore, we have

Ry (X, ) R Rx 2
RXs =T (ﬁ)e + 0@ 31)

So at the boundary

Rs Rs
Vig-ViS=¢r —ﬁfﬁe =®or — —Poy +8[<I>1r -

RZ

X
+ XPo,rr Rx — X— Rx®o,r0 — X(—)e%,e} =sRxPox (32)

which means at = R(0, 0) for the leading and first order

Ro
Vi @0 VLS = Dor — @%,9 =0, (33a)

Ry Ry
@19 = RxPox — XPo,rr RX + X—5

Vid1- VIS =Pyr — = R2

Rx@ors +X( o), os.  (330)
whereS = S(O, r, ).

Itis important for the subsequent matching to note that thati®ns of (28) with (33) are only defined
up to a linear termK x. For &g, however, this would result in terms 6f(s~1) if x = @(¢~1) which do
not match with an outer solutiapy = @ (1). Therefore, we will not include this extra term. Fdjg, on the
other hand, we will have to retain the possibility, and indnel a linear terniK1x will be added, wher& ;
must be determined by the matching.

From the identity at = R

d
g Poo = PoreRe + Pos, (34)
and with the defining equation appliedrat R while using relation (33a)
1 1 Ry 1
—®orr = SPor + 5 P0ss + Poxx = 5z Pos + 25 Poss + Poxx (35)

it follows that equation (33b) is equivalent to

d /R
Vi@V S = Qo(X, 9)—Rx<l>0x|r RT S [R|:€><<I>0xx|r R+d9< X Dogl,_ R)] (36)



4.1 Leading order.

The right-running solutionbg (only non-increasing exponentials are allowed for matghimay be ex-
pressed by the eigenfunction expansion

o0
Do(X) = Y Fnin(r, 0) €40 (37)
n=0
where
V2Un+22yn =0, Viyn-V.S=0 (38)

with Ag = 0, Yo is a constant (normalised to 1), the other eigenvalyesre real positive, and the eigen-
functionsy, are real, orthogonal and assumed normalized. In generséth®genfunctions are to be
determined numerically. However, if the duct is cylindlifiee., Ris independent of), we have

Yn(r.0) = Nndy(j),r/R) €, v eN (39)

whereJ, is thev-th order ordinary Bessel function of the 1st kind[15], ajfg is the u-th (real-valued,
positive) zero of];, ordered such that they are monotonically increasiNgis a normalisation constant,
and the corresponding eigenvalue is of course= |, /R.

The amplitudes are determined from the entrance interfaee) as follows

A0)
Note that, agy, are orthonormal, the axial flux is to leading order propaoréitto the imaginary part of
27 pR S
/ / DodG r drdo = — an|Fn|2e‘2’\“X. (41)
0 Jo —

As this expression is real, its imaginary part is zero andsthhe axial flux vanishes to leading order.
Indeed, the outer solution is a slowly varying functionofind therefore the flux, proportional to the axial
derivative, isO (¢).

Forx — oo, the exponential terms i®o(x) vanish and we have

do(X) >~ Fo. (42)

4.2 1stOrder.

Qo, the right hand side of equation (36), may be written as

> _ x d
(QO(X, 9) = Z Fne )»nX|:_ RX)‘nl/fn‘rzR =+ XRX)L%I/fn‘rzR =+ Ed—< wn g‘r R)j|

_ _AnX —AnX d
- R 12Fn[ AnRRe(x €X) yn| _ o+ x e d_( Ynol,_ R)} (43)

To solve the problem foid 1, we introduce a Green'’s functida(x; &) with x = (x, r, #) andé = (&, p, n)
satisfying
V2G + £5G = —s(x — &),

ax2
G(x;§) =0 atx=0. o

G(x; &) — aconstantx — oo.

X%G(X; &) — 0, x > .



We determine the Green’s function by applying the FourieeSiransform with respect tox (x — «) to
(44), to obtain

V3G — a?G = —\/g sin(a&)8(x. —&)). (45)

wherex, denotes the transverse componenxpf.e., x; = (r, 8) (similarly for &, ). We assume that the
Green'’s function can be expanded by the same basis fundibasabeen used fdrg

Gla,1,0:8) =) am(e, £)Ym(r, 0).

m=0

Therefore

o
V26 == " amdi¥m(r. ).

m=0

Substituting this into (45) yields
Y amym(Ai +o®) = \/; sin(e&)s(x, — &) (46)

m=0

Next, we multiply (46) withyr, and integrate over the cross sectig0) to obtain

// S a2 + @) do = \f [[ vate.0)simarsxs ~ ¢, o (47)

A0 M=0 A©0)

Orthonormality of the basis functions yields

2
—\f ;'”(“E)zwm(p 0. (48)
Therefore,
Gla,r,0:8,p,1n) = \/72 Sm(aé)ziﬁm(,o mMYm(r, 6). (49)
The inverse Fourier Sine Transform yields
2y * sin(ax) sinas)
G(x; ) =~ rg)l/fm(,oaﬁ)‘ﬁm(r,@) /0 2 4 a? dar, (50)
where[15] forrg = 0 _ _
/ w do = 37 min(x, &), (51)
0 o
and forim > 0,
R SIn(aX) S|n(a§) _1 —Am Max(x, &) i . .
/0 T2 1a2 do = 57 € P sinh(um min(x, €)). (52)

Therefore, the Green’s function becomes

GO &) =X+ 3 Ymlo, ym(r, B e T g < g (53a)
m=1 m

=63 vl e 9y e ) g g g < (53b)
m=1 m

Swhere f (@) = \/gfooo sin(ex) f (x) dx, f(x) = \/gfooo sin(ex) f (a) da.



Note that ax — oo, G tends tof and 52 "G tends to zero exponentially.
Using this Green'’s function, we obtaln far; the following relation, to be integrated over domain

D15(X — &) = GV2D1 — P1V3G. (54)

However, sinceb; ~ K1 for large& (see the remark below equations 33), this yields a diverigézgral
as the domain here is a semi-infinite duct. Therefore, weidena regionV’ with a finite length 0< x <
X0, Wherexg is small compared te~?, but large enough for all exponential terms to practicabyish.
Integrate (54) along domalili’ and by using Green'’s second identity we get

®1(8) Z/f (GA¢1—<I>1AG)dx=//< G&"'(Dl%—f) o
")/
// (GV P — 1V, G) - mda—i-// (G&_ 1%) do

r=R(0,n)
G(Qo(X 0)
ded K1&. 55
= [ R e + kat (59
r=R(0,n)
Since|V. S = &,/R2+ R2and & = ,/R2 + RZdg, we obtain
21 poo

1(6) = fo fo Qo(x, 0)G(x: &)l _rR XA + K4, (56)

As we haveyg in the form of a series expansion, we can write
o 2 o0
P1(E) = Kag + 3 Fn/O [—RRxxnx/fn\rzRfo X G(x: £, _ dx
n=1

{Rkazl/fn‘r rY g ( Ynol,_ R>}/o xe*nXG(x;g)|r=Rdx}d9 (57)

It may be noted that the normal derivative of this series dm¢€onverge uniformly near the wall. For all
basis functionsy, ¥, - n. = 0, whereas/; ®1-n; # 0.
Finally, we remove the&-integration by

0 s ' _ 1 — e *né o0 e tné _ gAmé
/0 S G(X; 5)‘r:RdX = 7)% Z Ym(R, 0)¥m(p, n)ikzm ) (58)
X e X 5y _2- @+ Mg e
/0 X e G(x; E)‘r:Rdx = K
o0 hn(e M€ _ g Amé )\2 _ )\2 —Ané
=3 YR Oy, p 2 ETZE I EUR T AW ETE g

e

If m = n, the limitAn, — A, should be taken.
Forx — oo, the exponential terms i1 (x) vanish and we have (we exchange the variaklasdg)

> 2 2d
<I>1(x):K1X+ZFn/O |:RRXA 1//n|p R+)\ dn ( Wnn|p R)}dﬁ

n=1

By using the periodicity of/, in its circumferential argument, we have finally

0 F 2
@100 = Kix + ) /0 RRxVn|,_gdn (60)
n=1 n



4.3 Matching.

Both the initial conditions fogg and¢1 and the constari; are determined from matching with the outer
solution. From equations (42) and (60) we have

$0(0) + Xgo x(0) + e¢1(0) ~ Fo+ eKax +2 Y - / RRcUn|,_dn (61)
n=1 )\n 0 g
and so we find
$0(0) = Fo
K1 = ¢0.x(0)

< e (62)
m@=2h{/R&%M§n
n—p N 0

5 Curved ducts

The present results remain valid for the slightly more gahgroblem of curved ducts (like certain musical
instruments) if the curvature of the duct axis (and its d&ive) is©® (¢). Together with the assumed slow
variation in the axial coordinate, the associated orthafjoaordinate system (based on the tangent and —
possibly—the normal and binormal of the curve that desesribe duct axis) leave the Laplacian unchanged
up to O (3).

A simple example is the inside of a perturbed torus, desdriiyea fixed torus radius~1 and slowly
varying tube radiugk. With local (polar-type) coordinatésr, ¢, we define

X = e 1(1+ er cosh) cogeé), (63)
y =¢ (1 + er cosd) sin(e€), z=r sing,

where 0<r < R(g£,0),0< 6 < 27,0 < ¢ < 2. If we write X = &, we get €f. equation 6)

V2 + 2%

= VEp +e*(1+er cos@)*zg’—;qs +e(l+er cos@)*l[coseg—rqs — 10 0]+e%2% =0. (64)

Boundary conditions & =r — R(X,6) = 0 are

vm-vls-%z . (65)
If we expandp = ¢o + ep1 + 2p2 + . . ., we get to leading order
V2¢o=0,Vi.¢o-n. =0, (66)
S0¢o = ¢o(X). ThenZ¢o = L ¢ = 0 and we have also
VZ¢1=0,Vi¢1-n. =0, (67)

leading togy = $1(X). So again-¢1 = 2-¢1 = 0 and we obtain again

V202 + oxx + Kk2po =0,  with Vigo- V. S= ¢oxRx,

yielding thus, after a similar argument as before, Websteguation.



6 Impedance walls

If the duct walls is equipped with an impedance-type acousting, we will in general expect solutions,
which will decay exponentially in axial direction. Thereéoin the compressed variab¥e only trivial (i.e.,
zero) solutions will exist. We will see that this is by anddarthe case, although for a purely imaginary
impedance in a straight duct there are exceptions.

The impedance-wall boundary conditiorrat R is given by

Von=—"%p=cq (69

with specific impedanc&. As before, we assume the Poincaré expangica ¢o + 1 + £2¢2 + . . ..
First we note that it is easily verified, thatdf = 0 only the trivial solutiongg = ¢1 = 0 occur. Then we
consider two possibilitiesZ = @ (1) andZ = O (¢).

6.1 Z=001)

As ¢ = O(e), we write¢ = 1. In this case we have only trivial solutions. Expand equegiand
boundary conditions as before, to get to leading order

V2¢o =0, with Vi go-n, =0 (69)
with solutiongg = ¢o(X), a function to be determined. To first order we have
Vi1 =0, with Vig1-n, = Cido. (70)

Since

// Viprdo = §1¢0/ de=0 (71)
A A

we must haveyg = 0, and sap1 = ¢1(X). Nothing changes when we continue, and so all terms of the
expansion vanish.

6.2 Z=0()
Now we have; = @ (1), which changes the boundary condition expansion. To lepalider we have
V2o =0 in A, with Vgo-n = do at d.4. (72)

This is an eigenvalue problem for the Dirichlet-to-Neumamperator[14]V: f +— g, that maps a given
Dirichlet boundary valuef to the normal derivativg of f’s harmonic extension inteb. In other words,
N(f) = &y |, , wherey is the solution of

V2% =0 in A, with ¥ = f at 9:4. (73)

As we are looking fotV (¢o) = ¢ ¢o, equation (72) corresponds to the eigenvalue problemf of

From Green’s 2nd identity, applied ¢ and its complex conjugate, it can be deduced that any pessibl
¢ isreal. Furthermore, from Green'’s 1st identity applie@gat follows that any possible is positive, and
Z is thus negative imaginary. From general operator-théaatonsiderations it may be deduced from the
boundedness @f4, that the eigenvalugsare discrete.

An example that illustrates this behaviour explicitly ig ttircular ductR = 1, where

do=r"e ™ with ¢ =m > 0. (74)

As the shape of the cross sectigh(X) changes withX, the values of that allow a solution also
change withX, and in general there are no solutions possible along thefdua fixed, givers .



This is of course not true for a duct of constant cross sectiod we will show here how in this case
the low-frequency solution can be found. Note that this tofuis just the unattenuated surface wave,
considered in Rienstra[17].

As we saw,¢ cannot be prescribed because it is an eigenvalue, and dheressentially part of the
solution that depends an So we have to writé(¢) and expand

(&) =Cto+eq+e2+... (75)
As before in equation (72), we have to leading order the &iglele problem
V2¢o =0, with Vido-ni = codo, (76)
with the pair(¢o, {o) as the solution. Then, to first order, we have
Vi¢1 =0, with Vigr-ni = Cop1 + L1go. (77)

By applying Green’s 2nd identity 91 and¢o we get

/ / PoVip1 — ¢p1Vigodo = 11 / ¢gde = 0. (78)
A dA
So¢1 = 0 andegy « ¢o. To second order we have (note that nBy = 0)

Vi +i%po =0,  with Vigo+n, = Loz + C2¢o. (79)

Similar to above, we find the solvability condition to be

/f ¢ovf¢z—¢zvf¢odo+x2/f ¢(2)d6=§2/ ¢Sd€+K2f/ ¢5do =0 (80)
A A A A

yielding ¢> expressed in2 and integrals of?.

7 Variable mean soundspeed and density

If soundspee@ = C(X, r, #) and mean densit) = D(X, r, 8) are not uniformly constant, but vary in
6 and slowly inx, we have the reduced wave equation (5), rewritten in slowlywg coordinates,

2. (C?px) + Vi + (C?V. p) +£2Q%p = 0, (81)

where the dimensionless frequenoy= ¢ is small. The hard-wall boundary condition is the same as
equation (14). When we expamo= po + ¢p1 + €2p2 . . ., we get to leading order

Vi« (C?Vipo) =0, with Vi po-n. =0, (82)

which has a constant as the solution o= po(X), a function to be determined. We can derive the same
equation forps, to get the same resupy = ¢1(X). For the second order we have

RRx

We go on to find a solvability condition fqu, by integrating this equation along a cross sectiorutilizing
the following identity for any differentiable functiof

d d 27 R 27 R 2
—// f(X)da:—/ / f(X,r,Q)rer:/ / fxrdrd9+/ f(X,R,0)RRx d9, (84)
dX JJ4 dX Jo Jo o Jo 0

Vi - (C?Vip2) + % (C?pox) + 2?po =0, with Vi p2-n = pox (83)



we have

2
//VL-(CZVLpz)daz po,x/ C’RR¢dd = po,x[(;’—xff Czda—// ;—Xczdo] (85a)
A 0 A A

Furthermore, we have

//aﬂ—x(czpo,x)da = po,x// 2 C2do + po,XX// C?do, and // Q%podo = Q%poA. (85b)
A A A A

Then, after introducing the cross-sectional averagedregusound speed

@:1// C2do, (86)
AJJa

a generalisation of Webster’s equation is obtained
AY(AC?po.x)y + Q2po = 0. (87)

This may be further simplified by the transformation

AX)C3(X) =d(X)%, po=dly (88)
into 2 4
Y Q /" B
v +(§—F)¢_O. (89)

8 Irrotational and isentropic mean flow

To analyse asymptotically low frequency acoustic perttioloa in a slowly varying duct with an irrotational
isentropic mean flow, as described by equations (7) and @yeed to approximate both mean flow and
acoustic field to the same order of accuracy.
We start here with the mean flow. In the dimensionless vambised, we hav€? = D?~1, so
equations (7) simplify to
12, D7
3Ve+ S -1 =E, Vv-(DV)=0. (90)

The mass flux at any cross sectiénis given by

//A DUds = 7. (91)

Due to the non-dimensionalisatidd, D, A, # andE are®(1). Introduce the slow variabl¥ = ¢x, and
assume/ andD to depend essentially ax, rather tharx. We write the velocity as

to distinguish between axial and cross-wise componentffuXf# and thermodynamical constaBtare
independent of, we can expantd = Up+ 0O (¢2) andD = Do+ @ (£2). As the flow is a potential flow, we
can derive, in the same way as in Rienstra[1], hat= Do(X), Ug = Ug(X) andV = O (¢), satisfying
the equations (to be solved numerically)

-1
F2 N D§

DoUoA = %,
oro 2DZA2 |y —1

— E. (93)

We writeV | = s\N/L.



Next we consider the acoustic field. Using the above resoittthe mean flow, equation (9) becomes
V2 + ¢2D5 " (Dogx)y = £2(i@ + Uody + V.-V ) [Co2(i + Uodx + V.-V )]

with hard wall boundary condition
Vo.-n=0 atr = R.

We expandp = ¢o + e¢1 + £2¢2 + . .. . To leading order we have
Vigo =0, Vigo-n. =0 (94)

yielding the constant solutiong., o = ¢o(X).
To first order we have the same equation. To second order we hav

VZ¢2 + Do *(Dogo.x) yx = (iQ +Uody + \7¢-V¢> [C62<i9 +Uoly + VL'VL)¢O]

with boundary conditions given by equation (19). After omation across a cross sectig{X), we obtain,
similar to before, the Webster equation generalised fotational isentropic mean flow

(DoA) " 1(DoAgo x)x = (i + Uoix)[Co2(if2 + Uozx ) o] (95)

Note that this equation seems to be equivalent to the seh diy®ierce[13, p. 422] apart from a fact%)r

8.1 Mean flow with impedance walls.

The problem with mean flow and an impedance wall is more iateic Instead of the duct wall boundary
condition given in equation (68), we have Myers’ conditid3]] rewritten according to Eversman[19], as
follows

ioDp d /DV,p

z E( z )
V; denotes the component of the mean flow vector tangentiaktatict wall andr denotes the tangen-
tial coordinate in that direction. The following identitybtained from the path of a particle following a

streamline along the wall,

iwD(v+n) = (96)

d dt dx d ud

_——— = — — 7
dr  dedtdx  V, dX ®7)
can be used to further simplify the boundary condition (weoduce our notation)
. 1, DV;p
|QD(V¢-n)=V—T(|Q+UJ’—X)( =5). (98)

We note thatp = O(¢) if = @ (1) since along the wall
p=—eD(iQ+UZ)s. (99)
If we consider the casg = @ (1), and expan@ = ¢o + €¢1 + .. ., we get to leading order, as before,
V2¢o =0, with Vi ¢o-n; =0,

S0¢o = ¢o(X). To first order we have the same equatl%fu&l = 0 for ¢1. With V; = Ug + O(?), the
boundary condition is now

DoUo po). (100)

iQ2DoUo(Vigr-n) = (iQ+ Uodd_x)( 7

f/ Vf(j)ldo:/ Vigi-n, d¢ =0,
A dA

together with equation (100), it follows that possible $ins are given bypg(X) = 0, i.e., purely con-
vected perturbations.

From



9 Conclusions

Webster’s classic horn equation and some generalisatiams heen (re)derived systematically, as an
asymptotic perturbation problem, from a number of modglssumptions by the method of slow varia-
tion. The conditions on frequency, medium and geometry gpdicitly indicated. The error and higher
order corrections are also explicitly stated. The preseridming is shown to allow in general only the
trivial solution. A curved duct is shown to produce the samaation if the radius of curvature is not
smaller than the typical wave length or duct length scalee @pproximation is non-uniform near source
or entrance. The prevailing boundary layer solution for dyiteary duct cross section is given.
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