ACTA ACUSTICA UNITED WITH ACUSTICA

Vol. 98 (2012) 158—-165

DOI 10.3813/AAA.918501

Wave Propagation and Radiation in a Horn:
Comparisons Between Models and
Measurements

P. Evenol), J.-P. Dalmont?, R. Caussé?, J. Gilbert®
D Ircam (UMR CNRS 9912), 1 place Igor Stravinsky, 75004 Paris, France. pauline.eveno @ircam.fr
2 Laboratoire d’ Acoustique de I'Université du Maine (UMR CNRS 6613), 72085 Le Mans, France

Summary

The modeling of wave propagation in a horn is still problematic as the limit of plane wave approximation is
known but no method is proven to give accurate results. This paper proposes to evaluate the error induced by
both a plane wave model and a spherical model. These models use a Transmission-Matrix Method based on
either plane or quasi-spherical propagation and loaded with two different radiation impedances. This study is
done on two musical instruments horns, one from a trumpet and the other from a trombone, whose geometry is
known to within a tenth of millimetre. The respective influence of both propagation and radiation is observed
by comparing the input impedance measured on each of the two horns with the impedance calculated with both
models. Differences between models and measurements are quantified and an extension to a whole trombone is
also done. The spherical model approximates the behaviour of the horn with an improved accuracy and differences

between the model and the measurement do not rise above 25 cents.

PACS no. 43.20.Myv, 43.75Fg

1. Introduction

The input impedance of a wind instrument is a quan-
tity that gives important informations regarding the in-
strument’s playing behaviour [1, 2, 3, 4]. It can be either
calculated or measured, in most cases with a sufficiently
good accuracy, given that the human ear is able to detect
frequency shifts of 0.2% (3 cents) [5]. Starting from the
wind instrument shape, the Transmission-Matrix Method
based on the plane wave approximation is usually con-
sidered as the most straightforward method of calculat-
ing the input impedance. Indeed, comparisons have shown
that good correlation with measurements can be obtained
[6, 7]. However, in the case of brass instruments, the mod-
eling of the horn is still problematic as the plane wave ap-
proximation is no longer valid when the slope of the horn
is too large. This limit is well known but to date no method
is proven to give accurate results. The aim of the present
article is to evaluate the error induced by the plane wave
approximation and to check another Transmission-Matrix
Method based on quasi-spherical wave propagation. The
radiation impedance is also problematic as it is well known
in the case of a cylinder but not in the case of a cone or a
horn. An alternative radiation impedance proposed by [8]
is also tested in the present paper. Results are compared
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with measurements, for which the accuracy in terms of the
resonance frequencies is shown to be within 3 cents.
Section 2 presents the state of the art and theory of the
propagation and radiation models that are used in this ar-
ticle. Section 3 describes the set-up used for the measure-
ments as well as the horns studied. Then, results of com-
putation and measurements are compared and discussed.
Finally, as this work is part of a project aimed at help-
ing craftsmen to design and characterize their musical in-
struments, an application for craftsmanship is presented in
section 4 in the form of an entire computed trombone.

2. Propagation and Radiation in a horn

2.1. Propagation models

The wind instrument air columns have been studied by
scientists for a long time [9, 1]. One of the simplest
and most efficient methods is the Transmission-Matrix
Method (TMM). This method approximates the instru-
ment structure as a sequence of concatenated segments,
cylinders or cones, each being mathematically represented
as a 2x2 matrix in which the terms are complex-valued and
frequency-dependent. An extension of the TMM to modes
-the Multimodal Method- can also be applied to that case
(see for example Amir et al. [10] or the method reviewed
by Kemp [11, 12]). Nevertheless, other methods have been
used to analyse the air column, such as the Finite Element
Method [13] and the Finite Difference Method [14]. Such
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numerical methods, based on the discretization of the ge-
ometry in small elements for which fundamental equations
can be solved, have the advantage that complex geome-
tries, such as musical instruments, can be handled easily.
However, the huge computation time necessary to solve
a complete instrument model is a serious drawback for
craftsmanship applications.

On the other hand, with an entire instrument described
as a transmission line, it is easy to calculate quantities
at the input end, defined as the usual point of excitation,
given quantities at the output end.

The Transmission-Matrix Method used in this article is
described in the article of Caussé et al. [15]. This method
has been proven to give results close to measured values
for wind instruments of cylindrical geometry when a plane
wave approximation is used [6, 7]. However, for horns, it is
not possible to assume plane wave propagation any more
[16, 17]. This is why Nederveen and Dalmont [ 18] propose
a low frequency correction for the TMM in the form of an
additional impedance that takes into account the transverse
flow inside the horn. Nevertheless, a problematic issue is
that the wavefront is still unknown.

Another approach is that of Agull6 et al. [19] who as-
sume the time-invariance of equipotential surfaces normal
to the profile and the axis of an axisymmetric horn and de-
velop 1D models for both spherical and oblate ellipsoidal
surfaces. Keefe and Barjau [20] use this model for a hyper-
bolic horn and find it to be more accurate than the plane-
wave horn equation or the spherical-wave horn equation
of Benade and Jansson [16, 17]. Nevertheless this method
cannot be applied to an arbitrary horn geometry, espe-
cially for a rapidly changing horn profile. For such cases,
Hélie [21] proposes a model with a geometrical hypothesis
(quasi-sphericity of isobars near the wall) which does not
require fixed wavefronts as usual. This hypothesis leads
to a solution of the Webster equation with curvilinear ab-
scissa.

For craftsmanship applications it is important to have a
reliable resolution that works for all geometries. That is
why it is preferable to use only truncated cones or cylin-
ders, and apply them in a Transmission-Matrix Method.
The horn equation with curvilinear abscissa derived in [21]
for quasi-spherical isobars also corresponds to the continu-
ous model obtained for piecewise conical segments when
the length of cones uniformly tends towards zero. More-
over, the artefacts due to the choice of cones rather than
a C! regular profile are negligible if the slope change be-
tween the cones is sufficiently small (see [22]). Hence, in
this article, we choose to compute the TMM using piece-
wise conical segments obtained for a sufficiently refined
mesh description. Then, we compare this piecewise spher-
ical model with a plane model constructed from the TMM
calculated along the horn axis.

2.2. Radiation models

The problem of the acoustic radiation impedance of a
cylindrical pipe is now well known. Cases of unflanged
and infinitely flanged cylinders have been solved [23, 24].
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These results are extended by Silva ef al. [25] above the
cutoff frequency of the first higher order mode. They give
a non-causal expression obtained by analytical and numer-
ical fitting to reference results from Levine and Schwinger
for the unflanged case and extracted from the radiation
impedance matrix given by Zorumski [26] for the infinite
flanged case. Furthermore, measurements on tubes with
various flanges that can be found in musical instruments
have been compared to theoretical and numerical results
[27].

However, these radiation impedances cannot be used in
every case. Indeed, the shape of a horn has a strong in-
fluence on the acoustic radiation, to such an extent that it
is no longer justified to use a plane radiation impedance.
This is why Caussé et al. [15] have introduced a correction
for the case of spherical waves, normalizing the Levine’s
expression by the ratio A,/A; where A, and A, are re-
spectively the planar and spherical wavefront areas. How-
ever, the large discrepancies betwee their model and the
measurement of a trombone bell indicate the need for an
improved model of the radiation impedance. To this end,
Hélie and Rodet [8] then propose approximating the radi-
ation of a horn by that of a pulsating portion of sphere, as
was first calculated by [28, 29], and give analytical formu-
lae.

This article aims at comparing two types of model: a
plane wave model and a spherical wave model. An un-
flanged case seems to fit well with the geometry of a horn.
The radiation impedance from Silva et al. [25] is thus cho-
sen as the plane wave model to be used above the cutoff
frequency.

The pressure reflection coefficient is defined as R =
_I R| e 2ikL

Silva et al. give the modulus of the pressure reflection
coefficient of an unflanged pipe as

1 + a;(ka)?

R = T anka) + axka) + as(ka)®’

ey

with a; = 0.800, a; = 0.266, a3 = 0.0263 and f = 1/2.
k = w/c is the acoustic wavenumber and a is the cylinder
radius (or the radius of the output end of the horn as shown
in Figure 1). L is the end correction due to radiation and
its expression is given by

L | + by (ka)?
a "I ¥ by(ka) + bs(ka)* + bs(ka)’

@)

with n = 0.6133, b; = 0.0599, b, = 0.238, b3 = —0.0153
and by = 0.00150. The radiation impedance Z, can be
then expressed as
1+R
Z.(w)=Z,——,
(©) = Zy— 3)
where Z. = pc/ma” is the characteristic impedance.

With regard to a spherical model, Hélie and Rodet give
an analytical solution for the radiation of a sphere, part of
which is pulsating (see Figure 1) with a uniform veloc-
ity while the rest remains motionless, though it remains to
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Figure 1. The radiation of the horn is approximated by that of a
sphere .S, part of which, Sy, is pulsating with a uniform velocity
while the rest remains motionless. The radius of .S is denoted r,
the angle of the tangent cone at the horn output is denoted 6, and
the radius of the end section of the horn is denoted a. From [8].

verify this model experimentally. This impedance is then
averaged over .Sy in order to remove the dependence on
spatial variables. The analytical expression includes an in-
finite sum, but can be simplified with a second order high-
pass model,

ivﬂ — (VP\,)2
Z(w) = Z. - > “
1 +2ivP;P, - (VP,)

where P, (6),P:(0y) and P,(6) are low order polynomials
whose coefficients are given in Table Tand v = rof /cis a
non-dimensional variable.

Figure 2 shows the modulus of the reflection coefficient
and the dimensionless length correction L/a of the plane
and the spherical models for the trombone bell studied and
presented in the next section (fy = 1.26 rad, ro = 11.5cm
and a = 11cm). The two reflection coefficients have al-
most the same behaviour for frequencies below ka = 2
since they follow the same asymptotic requirement at low
frequency. Then, they begin to differ. The spherical model
actually gives higher values for the modulus of the reflec-
tion coefficient than the plane model, which might intu-
itively seem wrong since the aim of a horn is to improve
the radiation at high frequency. Nevertheless, an explana-
tion can be found in the fact that the spherical model is
designed to produce a causal physical response. That is
not the case for the plane model, which aims at better ap-
proximating the Levine and Schwinger formulation at high
frequency than causal plane models. This plane radiation
model can thus tend towards zero quicker than the spher-
ical one. As for the length correction, an interpretation of
the same kind can be given for the differences at high fre-
quency. At low frequency, however, the plane model tends
to the known dimensionless static length correction of the
unflanged case which is equal to 0.6133. As for the spher-
ical model, it tends to a slightly higher value between the
static length correction of the flanged, which is equal to
0.8216, and the unflanged plane cases.
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Figure 2. Modulus of (a) the reflection coefficient and (b) the di-
mensionless length correction L/a of the plane model (in black)
and the spherical model (in grey) for the trombone bell.

Table I. Coefficients of the polynomials used in equation (4)
which are functions of 6.

% 0 0
P, 0.8788 1.0830 —1.24200
P; 0.7200 0.0799 0.22100
P, ~0.0220 4.7040 —0.07946
% % %
P, 11620 | —0.6360 0.1113
P; ~0.1440 0.0207 0.0000
P, ~0.4240 0.2607 —0.1980

2.3. Models including propagation and radiation

Two principal effects have to be taken into account so as to
give a complete model of the horn: the wave propagation
and the radiation. In order to evaluate the influence of each
effect, four models constructed from the combination of
the two wave propagation models from Section 2.1 and the
two radiation impedances from Section 2.2 are compared
(see Table II).

Two horns are studied in this paper. The first one is a
tenor trombone bell which starts, following the slide sec-
tion, with a cylindrical section of 10.4-mm radius. It be-
gins to flare modestly, terminating in an abrupt flare to a
radius of 110 mm after a 568-mm length (see Figure 3).
The second one is a straight trumpet section of length
664.9 mm that begins with a long cylindrical part of 5.8-
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Table II. The four models compared in this study. P stands for
Plane and S for Spherical.

Model 1 2 3 4
Propagation P P S S
Radiation P S P S
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Figure 3. Geometry of (a) the trombone horn and (b) the trumpet
horn.

mm radius and ends at a radius of 61.1 mm (see Figure 3).
The mandrel of the trumpet horn was measured with an
accuracy to within a hundreth of a millimetre and the ge-
ometry of the trombone was directly measured on the horn
with an accuracy to within a tenth of a millimetre.

All results of these combinations are shown in Figure 4
for the trombone bell and in Figure 5 for the trumpet bell.
These figures show that curves made from the same prop-
agation model are close to each other in all frequency
ranges. This means that the propagation model has a more
important impact on the input impedance behaviour than
the radiation model. Moreover, the spherical model re-
alises a better impedance adaptation since, at high fre-
quency, peaks are much lower for spherical than for plane
propagation.

As the respective influence of both propagation and ra-
diation models have been highlighted in this section, we
choose for the rest of the article just to focus on two mod-
els: Model 1 and Model 4.

3. Experiment results and discussion

3.1. Experiment set-up

For the input impedance measurement, a set-up developed
jointly by CTTM [30] and LAUM [31] is used [32]. In this
apparatus, a small closed cavity in which a microphone
measures a pressure p; (from which the volume velocity
of the source is determined) is connected to the back of a
piezo-electric buzzer. The measured pipe is connected to
the front of the buzzer via a small open cavity in which
a second microphone measures a pressure p,. The input
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Figure 4. Comparison of the four proposed models of the trom-
bone bell input impedance. Wave propagation: Plane (in black)
and Spherical (in grey). Radiation: Plane (thin curves) and
Spherical (thick curves).
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Figure 5. Comparison of the four proposed models of the trumpet
bell input impedance. Wave propagation: Plane (in black) and
Spherical (in grey). Radiation: Plane (thin curves) and Spherical
(thick curves).

impedance is then calculated from the transfer function be-
tween the two microphones.

The source signal is a logarithmic chirp of five sec-
onds length (generated by the PC audio sound card) lead-
ing to a frequency resolution of 0.2 Hz, from 50 to 2500
Hz. Finally, the measurement is obtained by averaging
three acquisitions. The entire apparatus is placed in an
anechoic chamber whose temperature has been estimated
previously by measuring the input impedance of a closed
cylinder of length 624 mm and radius 10.9 mm. According
to Macaluso and Dalmont in [33], the measurement set-up
allows the determination of the resonance frequencies with
an uncertainty of about 0.2%. Moreover, this measure-
ment apparatus was first tested by the authors with simple
known cases, in particularly with the cylinder mentioned
before. The difference between the measurement and the
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Figure 6. Comparison between the measurement of the trombone
bell input impedance (dashed line) and the two models: the plane
(in black) and the spherical (in grey).
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Figure 7. Comparison between the measurement of the trumpet
bell input impedance (dashed line) and the two models: the plane
(in black) and the spherical (in grey).

model (TMM with axial abscissa and radiation with a fi-
nite flange from [27]) in frequency was less than 0.15% for
all resonance peaks. This uncertainty allows one to make a
meaningful comparison between the different models and
the measurements of the horns.

The input impedance of each of the two horns was mea-
sured six times, removing the bell from the impedance sen-
sor each time in order to study the reproducibility. The
reproducibility error is about 0.2%. Consequently, mea-
surements of these horns can be considered as a reference
for the comparison with the models. This comparison be-
tween models and measurement is shown in Figure 6 for
the trombone bell and in Figure 7 for the trumpet bell.

3.2. Results

The behaviour of the curves in Figure 6 and 7 is different
below and above the cutoff frequency F, of the bell (see
Benade [34]) which is around 700 Hz for the trombone
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Table III. Differences between the measured and modeled reso-
nance peaks of the trombone horn at low frequency.

Resonance Measurement Model 1 Model 4
1st Fr=241.43 Hz 2.7% 1.8%
A=35.05dB 0.41 dB -0.02 dB
2nd Fr=517.22 Hz 2.8% 0.6%
A=23.89dB 1.53dB -2.52dB

Table 1V. Differences between the measured and modeled reso-
nance peaks of the trumpet horn at low frequency.

Resonance Measurement Model 1 Model 4
1st Fr=202.87 Hz 0.83% 0.56%
A=29.00 dB 2.42 dB 2.40 dB

2nd Fr=443.09 Hz 0.52% -0.37%
A=23.03dB 1.20dB 0.77 dB

3rd Fr=676.53 Hz 1.18% -0.27%
A=18.59 dB 1.04 dB -0.49 dB

4th Fr=913.41 Hz 1.48% 0.07%
A=16.00 dB 0.84 dB -1.38 dB

5th Fr=1177.20 Hz 1.38% 0.26%
A=13.83 dB 1.80 dB -1.27 dB

and 1300 Hz for the trumpet. Below that frequency, the
resonance peaks are sharp since the acoustic waves are re-
flected almost completely by the bell, whereas after, radia-
tion is more important and the peaks decrease significantly
in amplitude. When studying a musical instrument, it is in-
teresting to look at its resonance characteristics, which are
related to the playing frequencies. At high frequency there
are no more resonances; for this reason it is more useful to
examine the fluctuations of the reflection coefficient mod-
ulus above F,.

3.2.1. Low frequency analysis

Below the cutoff frequency, the models can be compared
in terms of the impedance resonance peaks. These peaks
are defined by three criteria: the frequency, the amplitude
and the quality factor. In order to help craftsmen to de-
sign their musical instruments, the frequency criterion is
the most important, as it is directly linked to the instrument
tuning. The amplitude and quality factor have a small au-
dible effect on the timbre and primarily affect the playing
response. Here a comparison is done on the frequencies
and amplitudes of the peaks, which are precisely deter-
mined with a peak fitting technique using a least square
method (see Le Roux [35]).

The results in Tables III and IV show that the spherical
model gives resonance frequencies closer to the measured
values than the planar one. This supports the hypothesis
of the quasi-sphericity of wavefronts which was experi-
mentally established in the low frequency range by Be-
nade and Jansson [16, 17]. The measured input impedance
is expected to be located between the plane and the spher-
ical models. This is actually the case for the second and
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Figure 8. Modulus of the difference between the two proposed
models (Plane model (in black) and Spherical model (in grey))
and the measurement on the reflection coefficient R (a) for the
trombone and (b) for the trumpet.

third impedance peaks of the trumpet bell, with the mea-
surement closer to the spherical model. The measured fre-
quencies of the higher resonances, which are lower than
predicted by both plane and spherical models, suggest that
the radiation is even greater at these frequencies. No ex-
planation can be given regarding why in both horns the
measured frequency of the first resonance is lower than
predicted by both models. Moreover it was checked in sec-
tion 3.1 that there was no problem with the measurement
apparatus.

3.2.2. High frequency analysis

Above the cutoff frequency, as the peaks do not have a suf-
ficient sharpness, a good way to evaluate the accuracy of
each model is to look at the reflection coefficient. Figure 8
shows the modulus of the difference between the reflec-
tion coefficient of each model and the measured one. In
this figure, it clearly appears that the two models behave
more similarly below the cutoff frequency than above. At
low frequencies, the sound waves are not able to travel
along the horn and as a result they are reflected. The re-
flection coefficient is thus approximately equal to one, re-
gardless of the model used. At frequencies above the cut-
off frequency, the bell becomes able to transmit waves to
the lower end of the air column where they are reflected
or radiated. Consequently, radiation has an important role
in that frequency range. The spherical model (Model 4)
has the closest fit to the measurements as the model of
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Table V. Differences between the spherical model and the mea-
surement for the resonance peaks of the whole trombone.

Resonance Measurement Model 1 Model 4
2nd Fr=111.80 Hz 1.50% 1.44%
(25.7 cents) | (24.8 cents)
A=66.53 dB 1.95dB 1.94 dB
3rd Fr=170.09 Hz 1.46% 1.33%
(25.0 cents) | (22.9 cents)
A=64.96 dB 1.56 dB 1.55dB
4th Fr=231.39 Hz 0.69% 0.49%
(11.9 cents) (8.5 cents)
A=64.72 dB -0.08 dB -0.13 dB
5th Fr=299.27 Hz 0.18% -0.04%
(3.1 cents ) (0.7 cents)
A=68.21 dB -0.76 dB -0.94 dB
6th Fr=353.12 Hz 0.33% 0.06%
(5.7 cents) (1.0 cents)
A=68.28 dB -0.07 dB -0.26 dB
7th Fr=412.37 Hz 0.79% 0.32%
(13.6 cents) (5.5 cents)
A=62.47 dB 1.55dB 0.91 dB
8th Fr=471.53 Hz 0.59% 0.21%
(10.2 cents) (3.7 cents)
A=65.67 dB 0.90 dB 0.19 dB

a pulsating portion of sphere realises a better impedance
adaptation than the planar piston.

4. An application for musical instruments
craftsmanship: Extension to the whole
trombone

In order to show the effective influence of the bell on a
whole instrument, the remaining part of the trombone is
added at the input end of the trombone horn, as shown
in Figure 9. As it is impossible to measure the geometry
of this remaining part with the same accuracy as for the
trombone horn, only the plane propagation model is thus
computed on this added part, taking the trombone horn in-
put impedances calculated and measured in Section 3 as
three different loads. By extending numerically the mea-
surement of the trombone horn input impedance we thus
create an “hybrid model”. Results are shown in Figure 10,
where the first “hybrid” resonance peak is not represented
since it appears below 50 Hz and no measurement has been
done below that frequency.

Table V suggests that the bell has a strong influence
on the acoustics of the whole instrument. Indeed, even
thought the horn only represents 20% of the trombone
length, and the model of the additional part is exactly the
same for the three curves in Figure 10, there is still a dif-
ference of more than 1% between the spherical model and
the measurement for the second and third resonance fre-
quencies. Nevertheless, the spherical model still gives an
approximation of the resonance frequencies that is closer
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Figure 10. Input impedance of the bell virtually extended to
the whole trombone: Comparison between the plane model (in
black), the spherical model (in grey) and the hybrid model
(dashed line).

to the measurement than the plane model, with a difference
between the two models rising up to 8 cents for the seventh
resonance. Moreover, it can be directly seen in Figure 10
that at high frequencies the spherical model follows the
behaviour of the measurement well.

5. Conclusion

The comparison between two 1D models (a plane and a
spherical) and the measurements of two brass instrument
bells, allows assessment of both propagation and radia-
tion models for a horn. Below the horn cutoff frequency,
wave propagation predominates over radiation, since most
of the waves are reflected by the horn. The spherical model
(rather than the plane model) gives results closer to mea-
surement for both horns, with the error in the predicted res-
onance frequencies less than 1% for all peaks (apart from
the first one in the trombone). Above the cutoff frequency
more waves are radiated and the comparison with mea-
surement shows that the model of the pulsating portion of
sphere is well adapted to the problem of horn modeling.
This article has thus shown that the spherical 1D model
approximates the acoustic behaviour of a horn more accu-
rately than the plane 1D model. Nevertheless, this model
still does not fit perfectly with the measurement.

The results might be then compared with other meth-
ods, such as Finite Element Methods, Boundary Ele-
ments Methods, Finite-Difference Time-Domain Methods,
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or Multimodal Methods. To this end, a benchmark test is
currently in progress in order to compare all these methods
with the measurements and models presented in this pa-
per. This test is done on four different horns: the two horns
studied in this article and two other cone-shaped horns.
The first results of this work can be seen in [36].

In conclusion, for musical instrument craftsmanship ap-
plications, the 1D spherical model can be considered a
good alternative to the currently used plane model, as dif-
ferences between the model and the measurement do not
rise above 25 cents (which is audible but still a substan-
tial improvement). The model is particularly useful since
it does not require very high computing power (any mu-
sical instrument maker should be able to use the designed
software with his own personal computer) and calculations
are fast.
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