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Geometrical representation of the fundamental mode of a
Gaussian beam in oblate spheroidal coordinates
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A new geometrical model for the fundamental mode of a Gaussian beam is presented in the oblate spheroidal
coordinate system. The model is an interpretation of a Gaussian amplitude wave function, which is an exact
solution of the scalar Helmholtz equation. The model uses the skew-line generator of a hyperboloid of one sheet as
a raylike element on a contour of constant amplitude. The geometrical characteristics of the skew line and the
consequences of treating it as a ray are explored in depth. Finally, the skew line is used to build a nonorthogonal co-
ordinate system that permits straight-line propagation of a Gaussian beam in three-dimensional space.

INTRODUCTION

In the past, depictions of the fundamental mode of a propa-
gating Gaussian beam consisted of both mathematical de-
scriptions of the wave function and geometrical interpreta-
tions of these descriptions. The mathematical model used
most frequently is the one introduced by Kogelnik and Li,'
which is only an approximate solution of the scalar wave
equation and is expressed in the Cartesian coordinate sys-
tem. Other authors2-4 have used the oblate spheroidal coor-
dinate system, shown in Fig. 1, to express the propagation of
a Gaussian beam because of the simplicity of modeling a
contour of constant amplitude in the beam as a hyperboloid
of one sheet, which is one of the oblate spheroidal coordinate
surfaces. It is also possible to obtain exact solutions to the
Helmholtz equation in this coordinate system, as was shown
by Einziger and Raz3 and Landesman and Barrett.4 In the
latter paper, the mathematical model of a Gaussian beam
was extended to include an entire family of analytic solu-
tions to the wave equation that possess an amplitude distri-
bution that is fundamentally Gaussian. This is the mathe-
matical model that is used here to develop a geometrical
depiction of the fundamental mode of a Gaussian beam.

Since Gaussian beams are used in a wide variety of optical
systems and instruments, a geometrical model of the beam is
an absolute necessity for system design and analysis. Ideal-
ly, the model should correspond to the mathematical de-
scription and interpret it in the light of geometrical optics.
Many methods exist for predicting the first-order properties
of a Gaussian beam as it traverses an optical system. Those
that are wedded to the mathematical description of Kogel-
nik and Li suffer from the approximations inherent in that
wave function as well as from the awkwardness of describing
the beam in the Cartesian coordinate system. A more use-
ful, and currently more popular, method is that introduced
by Arnaud,5 7 which unites the geometrical constructs of the
oblate spheroidal coordinate system with the wave fronts
and amplitude contours of the model of Kogelnik and Li. In
particular, Arnaud used the geometrical concept of a ruled
surface that is produced by the motion of a skew line. A
ruled surface is a surface generated by the motion of a

straight line, called a rectilinear generator, in three-dimen-
sional space. A hyperboloid of revolution of one sheet, n =
constant in the oblate spheroidal coordinate system, is one
example of a ruled surface, which, in this case, results from
the rotation of a straight line about an axis that it does not
cut. The straight line is therefore skewed to the axis of
symmetry, the z axis, and is referred to as a skew line. The
skew line lies on the surface of the hyperboloid and is every-
where tangent to it.

The skew line has enjoyed some popularity as the basis for
a Gaussian beam model because of the simplicity and the
well-behaved nature of a straight line. Arnaud treated a
complex representation of the skew line as a complex ray
that obeys the laws of geometrical optics. Further work has
since extended the representation of the fundamental mode
of a Gaussian beam by complex rays,8 -'0 a concept that
Felsen"i vigorously disputed. In contrast, a real representa-
tion of the skew line leads to an elegant design tool for
predicting the first-order properties of a Gaussian beam in
an optical system. This method was introduced by Shack' 2

and later was developed more fully by Kessler and Shack.' 3

All these constructs hinge on a geometrical interpretation
of the traditional description of the fundamental mode of a
Gaussian beam, as given by Kogelnick and Li.' This mathe-
matical model is written as

WO k(X2 + y2) X2 + y2

w(, z)) exp -{ kz - (b + kx+ 2 2 yW~,y )=(z) e i2R (z) w2(z) f
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Fig. 1. Oblate spheroidal coordinate system.

The beam parameters z0 and wo are known as the Rayleigh
range and the beam waist, respectively, and are related by

kwo 2k~2
°0 2 (5)

with k the propagation constant of the medium. The wave
function described by Eq. (1) is interpreted as having a
spherical wave front, with a radius of curvature R(z) and a
Gaussian amplitude distribution that expands according to
the hyperbola defined by Eq. (4). The factor w(z) repre-
sents the distance from the axis at which the field amplitude
is l/e times that on the axis. The phase difference ' is
interpreted as the phase difference between the Gaussian
beam and an ideal plane wave, and the amplitude factor wol
w gives the expected on-axis intensity decrease attributable
to expansion of the beam. The disadvantages of this mathe-
matical model include its reliance on the Cartesian coordi-
nate system, the limitation of its validity to only the paraxial
region, and the fact that it is only an approximate solution of
the approximated scalar Helmholtz equation.

The geometrical model developed here uses a real
representation of the skew line to interpret the new mathe-
matical description of a Gaussian beam given by Landesman
and Barrett.4 This beam is the zero-order member of a new
family of analytic solutions to the scalar wave equation and
is given by

- ex(ikd _xp-kd( - -q)]exp(-i tan', 01)
q' 0) = exp~ikd~)exp[ kd(02 + n2)1/2

(6)

where , wq, and are the oblate spheroidal coordinates, k is
the propagation constant of the medium, and 2d is the focus
spacing in the oblate spheroidal coordinate system (de-

scribed in detail in Appendix A). The function 00Q(, q, )
describes a wave with a wave front that is nominally a section
of an oblate ellipsoid (Q = constant). This wave front is
modified by the term exp(-i tan-' /1,h) as varies from 1 to
0. The exponential amplitude exp[-kd(1 - 7)] specifies the
amplitude distribution on the oblate ellipsoid. In the par-
axial limit, this term reduces to the traditional Gaussian
amplitude distribution, as shown in detail by Landesman
and Barrett.4 Further, the amplitude factor [2 + 2]-1/2

ensures that the wave energy falls to zero in the limit as the
wave propagates to infinity; that is, as z -0, - , and

iPo(t, , ) - 0. Finally, the exponential time dependence,
exp(-iwt), is understood and has been suppressed.

This new beam description possesses significant advan-
tages over previous attempts to model a Gaussian beam,
including its simplicity and the elimination of the paraxial
approximation. Since the wave function given by Eq. (6) is
not confined to the paraxial region, it can be used to model
beams with large divergence angles. Furthermore, this new
wave function predicts a small but significant phase devi-
ation from the classical model. At the le field point in the
Rayleigh range, there can be as much as a /6 difference
between the classical model and the new wave front.

In the course of building this geometrical model, the prop-
erties of a skew line are developed in depth; characteristics
noted by Arnaud 5 are incorporated, and other characteris-
tics are introduced. In addition, the concept of the skew line
as a real ray is explored. Since this idea does have certain
drawbacks, the skew line is ultimately used to build a nonor-
thogonal coordinate system that provides an unambiguous
framework for studying Gaussian beam propagation. Final-
ly, it should be pointed out that a ruled surface need not be a
figure of revolution and that the skew-line model presented
here can be extended to describe elliptic hyperboloids.
These are hyperboloids of one sheet whose cross section is an
ellipse; they can also be developed from the rotation of a
skew line about the z axis. For example, beams with this
profile are generated by semiconductor lasers, and a skew-
line model can be developed to describe these beams. How-
ever, in this paper only those beams with a circular cross
section are discussed.

SKEW-LINE GENERATOR OF A RULED
SURFACE

In this section, we begin by discussing geometrical charac-
teristics of an individual skew line and its relationship to
both the hyperboloid of revolution and the oblate ellipsoid
in the oblate spheroidal coordinate system. In subsequent
sections we shall expand the discussion to include the behav-
ior of families of skew lines. This constitutes the back-
ground for a later section in which the characteristics of a
skew line are compared with the ray of geometrical optics.

In Fig. 2, let NP represent a skew line revolving about the z
axis, with ON the common perpendicular to the axis and NP
in any position. ON then has a constant length W0, and, as
the line NP rotates, the point N describes a circle of radius
W0 in the x-y plane. The angle between the revolving line
and the z axis is also a constant .

Let P(x, y, z) be any point on the skew line, and let NP = 1.
The parametric equations of the locus of P in terms of I and
X, are then
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Fig. 2. Orientation of a skew line with respect to the z axis. The
skew line, 1, is shown for two possible deviation angles, 6 and 0.

constant value a as the skew line rotates about the z axis. As
z increases, a increases proportionately, while the deviation
angle 6 remains constant. If z- remains fixed, various values
of a generate different figures of revolution. Figure 5 dem-
onstrates this progression. If a = 0, the deviation angle is
also zero, and, as the rectilinear generator rotates about the z
axis, it sweeps out a cylinder. As a increases, the figure
becomes more twisted, generating hyperboloids of revolu-
tion of increasing deviation angle and decreasing waist sizes.
Finally, in the limit as a -> 7r/2, the waist radius W0 - 0, and
the figure becomes a right circular cone.

The twist angle a, the deviation angle 6, and the distance
from the plane of the waist z are related to one another.
Referring again to Fig. 4, note that triangle PQO' is a right
triangle with line segment PO', given by W, the radius of the
beam cross section in the z = z- plane. Line segments O'Q
and PQ then are given by

O'Q = W cos a,
PQ = W sin a. (10)

wo
I 

-zo -

Fig. 3. Cross section of the hyperboloid generated by the rotation
of a skew line about the z axis.

x = W0 cos k - 1 sin 6 sin 0,

y= W0 sino+lsin6cosO,

z = 1 cos 6.

Since O'Q is the projection of the beam-waist radius, Wo,
into this second plane, the value W cos a is always a con-
stant.

Comparing Eq. (9) with Eq. (4), we see that

tan2 6 -

Using Eq. (10), we can rewrite this as

tan 6 = W cos a 
zo

The relationship between tan
and is given by

(7)

The point P lies on a surface expressible as an equation in x,
y, and z. This equation is independent of I and , and we
can write

X2 + y2 = W2 + 12 sin2 = W0
2 + 2

Cos
2

6

X2 + y2
- Z2 tan2

6 = Wf2

X2 + Y2 z2 =1.

W0
2 W02 /tan2 6

(8)

(9)

This is the equation of a hyperboloid of revolution of one
sheet, with a waist radius Wo and with 6 as the angle of the
asymptotic cone, or divergence. A cross section of this fig-
ure, for 0 = constant, is shown in Fig. 3.

By the method of Arnaud 5 we can project the skew line NP
onto a second plane parallel to the z = 0 plane and located a
distance z away. The projected skew line forms the line
segment PQ, as shown in Fig. 4. The angle PO'Q has a

(11)

(12)

6 and z can be seen in Fig. 4

Z

Y

Fig. 4. Skew line projected onto a plane perpendicular to the z axis
and a distance NQ from the plane of the waist.
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generate a set of nonorthogonal parametric lines, or coordi-
nate curves, on the surface of the hyperboloid.

The twist angle, a, can be used to describe the oblate
ellipsoid by means of a variety of relationships. We can
equate it to the oblate spheroidal coordinate u, the radius of

l l fl A)\ 8//\/ /} vertex curvature of the ellipse Re, and the conic constant K
of the ellipse. By doing so, we can relate abstract parame-
ters, such as az, to a concept that lends itself to physical
interpretations. Furthermore, we can develop a basis of
comparison with well-known figures, such as circles and
spheres, through the relationship of the twist angle to the
vertex curvature and the conic constant. Ultimately, this
will provide greater insight into the behavior of the Gaussian
beam as it propagates. We now examine the relationship

a=O a=451 between the twist angle and the oblate spheroidal coordinate
a 0 O a 450 s; we shall develop the remaining relationships later in this

section.
The oblate spheroidal IA is a hyperbolic angle that can be

equated to a circular angle, in this case a, through the guder-
manian function.'4 The gudermanian expresses the func-
tional relationship between hyperbolic and circular angles

A without resorting to imaginary values. This function is
written as

and the inverse Gudermanian is given by

a c 600 a 90° 1A = = dt (15)
Fig. 5. Different ruled surfaces generated by varying amounts of COW)dlc) *(7
twist of the rectilinear generator (skew line). For zero twist, the
straight line produces a right circular cylinder. As a increases, the Performing the integration in both Eq. (16) and Eq. (17)
figure becomes a hyperboloid of one sheet of increasing divergence last aro nes eainhp
until, in the limit of a = 90°, it is a right circular cone. last aro nes eainhp

tan = sin a = d (13) X

Now the dependence of the twist angle a on the distance em i g n
from the plane of the waist can be expressed explicitly by C s -

tan = Z . (14) a

This is the s am e result as Eq. (2 ) with st the same angle as ,
the phase difference in the classical Gaussian beam descrip- th
tion. X 

As Arnaud pointed out, ther e seetwo possible orientations l t a p o i r
for a skew line; that is, a hyperboloid of revolution can be
generated by a skew line deviated to the right of vertical, as
shown in Figs. 2 and 4, or by one deviated to the left. This S\
would mean, in the former case, an angle r twisted counter- 
clockwise with respect to the positive z axis and, in the latter -|> p7 
case, an angle ae twisted clockwise with respect to the z axis. I
Figure 6 demonstrates this construction. The counterclock-
wise twist is considered a positive , since it is the same
d irec tion as a positive 0. Convers ely, the clockwise twist is
taken to be a negative a. Although the skew lines are equiv- 
alent in the sense that either generates a hyperboloid of one Fig. 6. The two possible twist orientations for the skew line S: a
sheet when rotated about the z axis, taken together they counterclockwise twist for +a and a clockwise twist for -.
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P

Fig. 7. Cross section of one confocal oblate ellipse and hyperbola.
Their common foci are spaced at 2d; K is the conic constant of the
ellipse, and Re is the radius of the vertex curvature of the ellipse
along the semiminor axis.

a = 2 tan-'(el) - r/2 (18a)

and

= ln tan( + °). (18b)

Expanding the tangent function leads to

e= 1 + sin a (19a)
cos a

and

-s 1-sin a (19b)
cos a

We can now derive a more explicit functional relationship
between /i and a. Using the definitions of the oblate sphe-
roidal coordinate t given in Appendix A and the exponential
definitions of sinh ,u and cosh tL, we can write

t = sinh A = tan a,
(W2 + 1)1/2 = cosh A = 1/cos a,

tanh te = sin a. (20)

Using these expressions, we can rewrite the parametric
equations for the oblate spheroidal system as

d sin 0 cos 0
cos a

d sin 0 sin 0
cos a

z = d tan a cos 0. (21)

We can conclude from this analysis that the skew line and its
corresponding twist angle can be used in describing the ob-
late spheroidal coordinate system in which we have de-
scribed a new mathematical model for a propagating Gauss-
ian beam. Therefore they should be equally useful in de-
scribing the beam itself.

In Eq. (9), varying Wo and 6 generates a family of hyperbo-

loids related by their common focus. As is shown in Fig. 2,
each member of this family possesses its own rectilinear
generator N'P' and deviation angle 0, but all members have
common perpendiculars to the z axis, ON' = W'cos a. Let
the length of the skew line N'P' = remain constant for all 0;
then the parametric equations of the locus of P'(x', y', z') are
similar to Eqs. (7), and we can write

x' = W' cos 0 = W' cos a cosq -l sin 0 sin,

y'= W' sino = W' cosa sino + I sin0 cosX,

z' = cos 0. (22)

We wish to find the surface containing P', which is the
endpoint of all skew lines having the same length 1 and twist
a from the plane of the waist. This surface will be indepen-
dent of 0 and A, and we can write

X
2 + y'

2 = W2 COS2 a + 12 sin2 6,

W2 = W2 COS 2 a + 12(1 - Z 2/12,.

After some algebraic manipulation, Eqs. (23) become

+ 2 = 1.
12/Si1 2 a 12

(23)

(24)

This is the equation of an ellipse at a constant distance 1, as
measured along a skew line, from the plane of the waist of the
hyperboloid of revolution. A family of skew lines with con-
stant length 1 is shown in Fig. 7. The arc PA lies on the
ellipse specified by the constant angle a. This family is
discussed further in a subsequent section. Since the param-
eter l/sin a > I for a <r/2, this particular ellipse has foci and
a semimajor axis located in the plane z = 0 and is a figure of
revolution about the z axis. As such, it is referred to as an
oblate ellipsoid.

Equations (9) and (22) represent specific examples of
more-general families of hyperboloids of revolution of one
sheet and oblate ellipsoids that are orthogonal. The general
equation for a hyperboloid of revolution is given by

- + = 1,

ah2 ah2-d

whereas for an ellipse it is

p2 + z22
2 +e - =1,

a, 2 a, 2 -d

ah < d,

ae > d,

(25)

(26)

where p2
= x

2
+ y

2. For a figure of revolution about z, the
focus describes a ring of diameter 2d. The parameters ae
and ah, shown in Fig. 8, refer to the semimajor axis of the
ellipse and the waist radius of the hyperboloid, respectively.

Comparing Eqs. (22) with Eq. (26), we note that

ae2 22 = 12 = - d2.
sin a

This expression can be reduced to

1 = d tan a,

and Eq. (26) becomes
P2 z2

_ + =1.

d2 /cos2 a d2 tan2 a

(27)

(28)

(29)

Note that the twist angle a determines not only the length of
the skew line I but also the specific ellipsoid in a family of
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the twist angle in terms of the conic constant. These expres-
sions are

2 KCOS = 1

2 1sin a= K 1

A general expression for the hyperboloid of revolution can
be obtained by comparing Eqs. (25) and (9). First, note that

Wo2 ah2
ah - d 2

=- 0 -- ahtan 2 6 tan 2
(35)

where

ah = d sin 6. (36)

Since 6 is a specific deviation angle and represents all
possible such angles between 0 and ±r/2, replacing 6 by 0
produces a family of hyperboloids expressed by

p2 z2
2_ =1

d2 sin2 0 d2 cos2 6
(37)

In this formulation, the Rayleigh range for any specific hy-
perboloid is given by

zo = d cos 6,
and the expression for the waist radius has the form

wo = d sin .

(38)

X L -

Fig. 8. A fan of skew lines, each having the same length from the
elliptical arc PA to the line segment NO. Each skew line is the
rectilinear generator for one of the members of the family of hyper-
boloids in the oblate spheroidal coordinate system. The vector t is
the tangent vector to the elliptical arc, and s is the skew-line vector.

ellipsoids with the same focus. Therefore this angle can be
used to ascertain both the conic constant and the radius of
vertex curvature associated with each ellipsoidal surface.
We now establish the relationship between these two param-
eters and the twist angle.

Figure 8 demonstrates the connection among the focus
distance d, the conic constant K, and the radius of vertex
curvature Re. The conic constant occurs in the expression
for the sag of the ellipse and provides a basis of comparison
with a sphere, for which K = 0. These relationships can be
expressed by

(Re2)Kd2 =(e )K(30)
(K+ 1)2

and

(K + 1)2 (31)

Comparing Eqs. (26) and (29), we see that the lengths of the
skew line and the semiminor axis are equal. Making this
substitution into Eq. (31) yields

d2 tan 2 a = e (32)
(K + 1)2

Using the expression for d2 given by Eq. (30), we can rewrite
Eq.(32) as

Re 2 (K + 1)2 1
tan2 a = (33)

(K + 1)2 Re2K th (33)

This leads to expressions for both the sine and the cosine of

(39)

So far, we have discussed the characteristics of a skew line
as it pertains to both a hyperboloid of one sheet and an
oblate ellipsoid. We began by showing how a straight line
tilted at an angle 6 from the z axis and skewed to it forms a
single hyperboloid on rotation about the z axis. Next, we
found that the endpoints of a family of skew lines all having
the same length and twist formed a single oblate ellipsoid.
We then expanded the equations for the hyperboloid to
include all possible deviation angles 0 between 0 and 7r/2 and
derived a general equation for a family of hyperboloids with
the same focus spacing. We performed the equivalent pro-
cedure for a family of ellipsoids. Along the way, we were
able to relate the twist angle a of the skew line to the skew-
line length, the conic constant of the ellipse, the guderman-
ian of the hyperbolic angle ,u in the oblate spheroidal coordi-
nate system, and the phase difference 4 in the traditional
description of the fundamental mode of a Gaussian beam.
We can also see from Eqs. (28), (14), and (2) that this phase
difference is directly proportional to the skew-line length, or

tan 4b = tan a = --
d (40)

We may expand on the relationship between an ellipse,
specified by a, and the rectilinear generators of a family of
hyperboloids. Each member of this family of skew lines has
the same length I and a deviation angle 0 appropriate to its
hyperboloid, and it intersects the plane of the waist along a
line segment at an angle from the x axis. We shall refer to
this family or aggregate of skew lines as a fan, as depicted in
Fig. 7. The parametric equations for this family are given
by Eqs. (21), with a and constant. Each skew line, repre-
sented here as the vector s, has the same length between the

.7

(34)
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elliptical arc PA and the line segment ON. The intersection
of each successive skew line with segment ON is a distance d
sin 0 from the origin, where 0 is the deviation angle of the new
skew line and represents another member in the family of
hyperboloids. Furthermore, each skew line is perpendicular
to the elliptical arc. This is intuitively true, since each skew
line lies on a hyperboloid, the orthogonal surface to an oblate
ellipse. A more detailed proof is given in Appendix B.

GEOMETRICAL INTERPRETATION OF
exp(-i tan-' s/n)
Both the classical mathematical model of a Gaussian beam
given in Eq. (1) and the new model of Eq. (6) include arctan-
gent factors in their exponential phase terms. A geometri-
cal interpretation of these terms would provide much useful
insight into the nature of a phase front as it propagates. In
the case of the term exp(-i tan-' s/n), a simple geometrical
explanation does exist.

Figure 9 displays the skew line PN once again at a devi-
ation angle 0, along with the attendant elliptical arc PA.
Further, the figure designates two planes, one perpendicular
to the z axis at the point O' and the other perpendicular to
the z axis at point A. The O' plane intersects the hyperbola
of deviation angle 0 in a circle with radius p = PO'. The A
plane is the tangent plane to this oblate ellipsoid at the point
(0, 0, A). The distance along the z axis between these two
planes is the sag of ellipse. As demonstrated earlier in this
paper, the distance AO must be the length of the skew line, d
tan a. Therefore the equation for the sag is given by

sag = d tan a(1 - cos 0). (41)

The distance from the plane O' to plane A along the skew
line, designated Al in the drawing, is simply sag/cos 0, or

d tan a (1-cos 0).
cos 0

(42)

The increased length of the skew line translates directly into
an increase in the twist angle a. We shall refer to this
increased twist as Aa. The entire length of the skew line
from the point N until it intersects the plane A is given by 1 +
Al. Given in terms of the twist angle, this is

I + Al = d tan(a + Aa). (43)

Substituting the value of d tan a for 1 and Eq. (42) for Al
yields

d tan a a + dtan a = tanadtan(a + Aa). (44)
cos 0

This reduces to

tan a = tan(a + Aa). (45)
cos 6

From the definition of the oblate spheroidal coordinates, we
can substitute t and n for the terms tan a and cos 0, respec-
tively, and Eq. (45) becomes

- = tan(a + Aa). (46)
77

Finally, by taking the arctangent of both sides, we obtain

tan-' O/' = a + Aa. (47)

z

Fig. 9. The differential change in twist angle, Aa, corresponds to
the sag of the elliptical arc, PA, as measured along the skew line.
This distance is given by d/n - d§.

Some algebraic manipulation is required to obtain an ex-
pression for Aa in terms of t and -q. This equation is

Aa = tani[ M - )] (48)

The entire exponential phase factor exp(-i tan-' /1-q) can
then be rewritten as

exp(-i tan-' t/) = exp[-i tan-' t - tan-' ( (49)

The difference between the exponential arctangent phase
term of the classical Gaussian beam mathematical model
and the one represented by Eq. (6) is the phase term attrib-
utable to Aa.

The exponential factor exp(-i tan-' s/1n) can be interpret-
ed as representing the difference in phase that a wave distur-
bance would undergo in traveling along the skew line in the
time required for the edge of the beam to advance to the z
distance represented by plane A. In other words, as the
beam propagates, its center passes plane A at time tj. At a
later time t2 , the beam edge will pass plane A, and in the time
t2 - tj, the phase of the beam will have changed by Aa.
Another interpretation is that of an off-axis, or wave-front,
error; that is, a wave front is ideally a section of an oblate
ellipse, but off axis it deviates from the ideal by an amount
given by Aa/k. For example, a = 450 at the Rayleigh range
of any Gaussian beam. In the case of a highly divergent
beam with a 0 of 100 at the 1/e field point, the wave front has
a X/8 deviation from a perfectly oblate ellipse at the 1/e
radius at the Rayleigh range. In the limit as 71 - 0, the skew
line collapses to the plane of the waist, and the exponential
factor equals exp(-i7r/2). Since the skew line normally ex-
tends on either side of the waist, and since the entire line
collapses into the beam waist as 77 - 0, the overall phase
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change is 180°. This is consistent with the 180° phase shift
experienced by a general light wave in passing through a
focus. Finally, we note that the sign of the phase term is
such that a surface of constant phase will be curved toward
the plane of the waist and inside the figure of the oblate
ellipse. Although it is tempting to believe that this makes
the wave front more nearly spherical, the opposite is true.
An oblate ellipse is always curved inside the figure of a
sphere whose radius corresponds to the vertex curvature of
the ellipse.

THE SKEW LINE AS A RAY

We have pointed out a number of interesting features of
individual skew lines as well as of fans of skew lines. In
particular, we note that the relationship between an ellipti-
cal arc and a fan of skew lines demonstrates three character-
istics of wave fronts and their trajectories. First, the spatial
separation as measured along any skew line of the fan be-
tween an elliptical arc and the plane of the waist remains
constant. This statement can be generalized to include the
separation between any two elliptical arcs that are different
twist angles and are perpendicular to the same family of
skew lines. Second, successive elliptical arcs are perpendic-
ular to a skew line, prompting comparisons between succes-
sive arcs on a wave front and the wave front's orthogonal
trajectory, or ray. Finally, the skew line is a straight line, as
is the current geometrical-optics model ray in a homoge-
neous medium.

Still further, we can prove that, when a ray with a skew-
line trajectory is reflected from an oblate ellipsoidal mirror,
the reflected ray also possesses a skew-line trajectory on the
same hyperboloid as the incident ray. Proof of this requires
a three-dimensional vector analysis and can be found in
Appendix C. This particular characteristic of the skew line
finds a useful application in modeling ray behavior in an
optical resonator. The continuum of all such skew rays
forms the hyperbolic amplitude contours. Such an envelope
of rays was discussed by Bykov and Vainshtein,15 Kahn,16

and Stein.' 7

All the above results demonstrate that the skew-line mod-
el of a propagating Gaussian beam, as expressed in Eq. (6),
possesses strong parallels with the theorems of geometrical
optics. However, two traits of a skew line prevent it from
being defined as a ray. The first is that the skew line is not
the gradient of the wave described by Eq. (6). Second, if a
skew line is to be seen as a ray, the possibilities of its two
different orientations must be considered equally likely.
One way to include both positive and negative (counter-
clockwise and clockwise) twists in the geometrical descrip-
tion of a Gaussian beam is to treat the two skew lines as unit
coordinate vectors, t and , which, together with the unit
vector , form a nonorthogonal coordinate system.

The skew-line fan of Fig. 7 can be repeated for a counter-
clockwise twist, and the resultant figure forms a mirror im-
age of the clockwise fan. This is demonstrated in Fig. 10.
The skew line s of Fig. 7 reappears as pointed in the
opposite direction, and the tangent vector to the ellipse, t,
has been renamed . The skew line for a positive a, or a
counterclockwise twist, is az. Figure 10 sketches the skew-
line fans for a few discrete deviation angles. In actual prac-

X

Z Z

Clockwise Counter Clockwise
Fig. 10. Skew-line fans for a clockwise twist (-a) and a counter-
clockwise twist (+a), for discrete skew lines. The skew lines are
denoted as the vectors v and a, and is the tangential vector to the
elliptical arc. The figures are mirror images of each other.

tice, the fans are surfaces called right conoids, as shown in
Fig. 11. All these conoids are ruled surfaces; they are
formed by the motion of a straight line, the skew line, in
three-dimensional space. Together with the oblate ellip-
soid, these surfaces form three coordinate surfaces in a non-
orthogonal coordinate system, which we now explore. An
excellent discussion of general three-dimensional curvilin-
ear coordinate systems can be found in Stratton's Electro-
magnetic Theory.1 8

NONORTHOGONAL COORDINATE SYSTEM
The coordinate system whose unit base vectors are shown in
Fig. 12 consists of two right conoids, one left-handed and the
other right-handed, whose axis of symmetry is the z axis, and
an oblate elliposid with a focal ring of radius d in the x-y
plane. The right-handed conoid is the counterclockwise
skew-line fan (+a), so named because the skew lines seem to
sweep in the direction of the fingers of the right hand with
the thumb pointed in the direction of the positive z axis as a
varies from -7r/2 to +r/2. Similarly, the left-handed conoid
is the clockwise skew-line fan (-a). This time, as a varies
from +7r/2 to -7r/2, the skew lines sweep in the direction of
the fingers of the left hand when the thumb is pointed in the
direction of the positive z axis. The coordinate angle 0 is the
deviation angle of the skew line with respect to the z axis.
This coordinate system is not orthogonal, since the coordi-
nate surfaces do not intersect at right angles.

The parametric equations for this system are

d sin 0 cos[ 2 v
x(u, v, ) =

-
Cos2

d sin 0 sin[ + l
y(u, v, ) = c 1

u - v
z(u, vs ) = d cos 0 tan[ 2 ' (50)
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Fig. 11. Continuous surfaces generated by the skew-line fans of Fig. 10. The left-hand drawing represents a left-handed right conoid

corresponding to a clockwise twist, and the right-hand drawing represents a right-handed right conoid corresponding to a counterclockwise

twist. In both drawings, the lower circle represents the plane of the waist, and the upper circle represents an oblate ellipsoid a distance from the

waist. The vertical dashed-dotted line represents the z axis in both drawings.

Fig. 12. Unit base vectors a, D, and 0 for a nonorthogonal coordinate system. The two conoids join in an elliptical arc in the left-hand drawing.

Their junction in the plane of the waist is shown in the right-hand drawing.
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where

u 0+ (51)

and

v=0-a. (52)

Note that these equations strongly resemble the paramet-
ric equations of the oblate spheroidal coordinate system.
For that system, we discussed surfaces on which one of the
coordinate variables was constant and the unit base vectors,
I, , and A, were the normals to these surfaces. For the sake
of simplicity, we shall not discuss the surfaces on which the
coordinates u, v, and are constant. Instead we shall outline
the unit base vectors, , v, and , as the vectors tangent to the
right-handed conoid, the left-handed conoid, and the oblate
ellipsoid, respectively.

The position vector r to any point in the three-dimension-
al space is given by

r = x(u, v, 0)1 + y(u, v, 0)5 + z(u, v, 0)%, (53)

where , 5, and are the unit base vectors in the Cartesian
coordinate system. A differential change in r, due to small
displacements along the coordinate curves, is expressed by

dr = -r du +-dv + do. (54)

If one moves a unit distance along any one of the coordinate
curves, the change in r is directed tangentially along that
curve and has a magnitude of 1. The vectors

Or
au
Or
au

Or

Or
Ou

Or

|=- (55)
Or

are the unit base vectors for the coordinate system. For the
nonorthogonal system here, these are

a = (-sin sin v)t + (sin cos v)5 + (cos 0)%,
= (-sin sin u)l + (sin cos u)5 + (cos 0)%,

cos cos 0 + cos sin0 sin sin[(u-u)/2]
(1 - a2)1 /2 (1 - a2)11 2 (1 _ a2)1 /2

(56)

where a = sin 6 cos[(u-v)/2J. Figure 12 shows these vectors
at two different points in space.

In the left-hand drawing of Fig. 12, the observation point
resides on an oblate ellipse some distance from the plane of
the waist. The vectors a, , and are shown as tangents to
the two conoids and the oblate ellipsoid, respectively. The
conoidal surfaces meet in an arc on this ellipsoid and are

separated in the plane of the waist by the acute angle 2a,
where a is the twist angle associated with the ellipsoid.
Likewise, the right-hand drawing in Fig. 12 shows the obser-
vation point in the plane of the waist with the associated unit
base vectors. The conoids meet along a line segment in the
waist and are separated on an oblate ellipsoid by the acute
angle 2a.

The most useful aspect of these unit vectors is their rela-
tionship to the unit vectors of the oblate spheroidal system.
Starting with Eqs. (56), some algebraic manipulation leads
to the relations

a-Li
2(1 - al

a+
2a

X= -a. (57)
Clearly, the connection between the two systems is a simple
one, with the useful result that two straight-line vectors, 
and , can synthesize the tangential vectors, and X, to two
curves in space, a hyperbola and a circle.

Although using a nonorthogonal coordinate system seems
an unnecessary complication of the geometrical model, this
particular coordinate system has some advantages over the
oblate spheroidal coordinate system in describing a propa-
gating Gaussian beam. Specifically, a wave-front surface
normal can be obtained from the difference between the
two skew-line vectors, a and . This gives us the advantage
of using straight-line trajectories to predict the beam's be-
havior on propagation without neglecting the proper de-
scription of a wave-front normal. Also, the nonorthogonal
system is allied so closely with the oblate spheroidal coordi-
nate system that straight-line propagation can be used with-
out deviating from an exact mathematical description of the
beam.

CONCLUSION

A simple but precise geometrical interpretation of the alter-
native mathematical description of the zero-order mode of a
propagating Gaussian beam, represented by Eq. (6), is pre-
sented in this paper. Both the geometrical and the mathe-
matical models are expressed in the oblate spheroidal coor-
dinate system, and it is one of the coordinate surfaces, the
hyperboloid of one sheet, of this system that forms the basis
of the geometrical configuration. Specifically, the hyperbo-
loid is an example of a ruled surface that can be generated by
a straight line, skewed to the z axis, rotating about the z axis.

The properties of an individual skew line as well as those
of families of skew lines have been discussed in detail. We
began by describing the hyperboloid generated by the skew
line and then related the skew line to the oblate ellipsoid
with the twist angle concept. This relationship exists in the
definition of the conic constant of the ellipse, the guderman-
ian of the hyperbolic angle ,4 in the oblate spheroidal coordi-
nate system, and in the length of the semiminor axis of the
ellipse. Furthermore, the length of the skew line from the
plane of the waist to an ellipsoidal surface is directly propor-
tional to the tangent of the twist angle.

One intriguing aspect of both the new and the traditional

B. Tehan Landesman
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models of the Gaussian beam is the presence of a pure phase
term that has an arctangent dependence. In the traditional
model, the phase term is exp(-ia), where a is the twist angle
described in an earlier section. The interpretation of this
term is a phase difference between the actual wave front and
a plane wave. In Eq. (6), however, the term appears as
exp(-i tan-' a/-q), which represents the sag of the obIate
ellipse as measured along the skew line.

The properties of an individual skew line can be expanded
to include families of these lines, and it is in consideration of
one type of family in particular, the fan, that strong parallels
with the ray of geometrical optics can be found. A fan of
skew lines intersects any oblate ellipse in an arc, and each
member of the fan is perpendicular to this arc. Further, the
spatial separation remains constant between two successive
arcs, as measured along any member of the fan, much like
the constant separation between any two successive wave
fronts, as measured along their orthogonal trajectories or
rays. Proceeding with the idea of a skew line as a ray, it is
shown in Appendix' C that a ray with skew-line trajectory
reflected from a mirror that is a section of an oblate ellipsoid
yields its opposite member, that is, a ray with the skew-line
trajectory of the same hyperboloid and an equal, but oppo-
site, twist angle.

Finally, we pointed out the failure of the skew line as a ray.
Specifically, the skew line is not the gradient of the wave
described by Eq. (6), and since there are two possible orien-
tations of each skew line, they must be considered equally
likely. It was then'suggested that the real power of the
skew-line model might be shown by using both orientations
as two components in a nonorthogonal system, and the de-
tails of this system were discussed. Instead of creating an
unnecessary complication of the issue, the use of both of
these skew-line vectors makes straight-line propagation pos-
sible, while providing the unambiguous framework neces-
sary for locating points in space, identifying the wave-front
normal, and defining deformed surfaces such as aberrated
wave fronts.

APPENDIX A: THE OBLATE SPHEROIDAL
COORDINATE SYSTEM

The oblate spheroidal coordinate system, shown in Fig. 1, is
formed by rotating a system of mutually orthogonal ellipses
and hyperbolas about the minor axis of the ellipse. The z
axis is the axis of rotation, and the focus is a ring of radius d
in the x-y plane. The parametric equations relating the
oblate spheroidal coordinate system to Cartesian coordi-
nates are

x = d cosh A sin O cosX,
y = d cosh A sin O sin 0,
z = d sinh A cos 0,

with either

0•6i7r, 0•t<A , 0 <ck2ir

or

(Al)

x = d(1 + 42)1/2(1 - 72)1/2 COS a,

y = d(1 + 42)1/2(1 - 72)1I2 sin ,

z = dn,

with either

-l1 S 7<1, 0 < t< , .O O0 <27r

(A3)

(A4a)

or
-0 < 1, -X< <, 0 < <.2r. (A4b)

In the oblate system, the surface ki = constant > 0 is an
oblate ellipsoid with a major axis of length 2d cosh , and
minor axis of length 2dlsinh A. The surface t = 0 is a
circular disk of radius d centered at the origin in the x-y
plane. The surface 1| = constant < 1 is a hyperboloid of
revolution of one sheet whose asymptotes pass through the
origin, inclined at an angle 0 = cos-i q to the z axis. The
degenerate surfaced, = 1 is the z axis. The surface - = 0 is
the x-y plane, except for the circular disk t = 0. Finally, the
surface 0 = constant is the azimuthal plane containing the z
axis. The angle k is measured from the x-z plane.

APPENDIX B: PROOF THAT AN ARC OF AN
OBLATE ELLIPSE IS PERPENDICULAR TO ITS
ATTENDANT SKEW-LINE FAN

The parametric Eqs. (Al) describe the arc PA in Fig. 8 for
the case in which a and k are held constant. These equa-
tions are therefore functions of 0 only and have the form

d sin 6
x (6) =cos cOS( 4 a),

sin 6
y(6) = d s sin(q5 + a),cos a 

z(6) = d tan a cos 0, (BI1)

where we have made the substitutions for sinh A and cosh At
given in Eqs. (20).

The angle 0 is measured from the x axis to the line seg-
ment ON in the plane of the waist only. The azimuthal
angle in any other plane perpendicular to the z axis is given
by k i a. The angle a determines the ellipse of interest and
the length of the skew line. The tangent to the elliptical arc
is given by

t Ox() y() 9 + z() ao ao~ 5+ a (B2)

where x, 5, and 2 are Cartesian unit vectors. Differentiating
with respect to 0 yields

t d cos 0 cos(, d: a) x +d cos 0 sin(o + a) ,
cos a cos a

-d tan a sin 0 2. (B3)

(A2a) The + for cc determines whether the arc in question is for a
counterclockwise (+a) twist or a clockwise (-a) one.

The vector representation for a skew line s is given by

s = (x'-x)x + (y'-y) + (z'-z)2.0 0 7r/2, -- S p < , 0 0 2r. (A2b)

In the oblate case, we let t = sinh At and 7t = cos 0. The

parametric equations then become
In the plane of the waist, a = 0, and the parametric Eqs. (Bi)
become

(B4)
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x = d sin cos 0,
y = d sin sin ,
z = 0. (B5)

On the elliptical arc,.the coordinates of a point are x', y' and
z' and are described by the parametric equations

X'(6) = d sin 0 cos(t a)
cos a

y'(0) d sin 0 sin( a)
cos a

z'(0) = d tan a cos .

Substituting Eqs. (B5) and (B6) into Eq. (B4) gives

(B6)

s = (d tan a sin 0 sin ¢)x + (d tan a sin 0 cos 0)9
+ (d tan a cos )2. (B7)

The magnitude of s is d tan a, the length of the skew line.
Note that, regardless of the choice of a, the magnitudes of
the x and 5 components are opposite in sign.

Taking the dot product of t and s leads to

t s = -d2 tan sin cos (o ± )si 
cos a

d tan sin cos 0sin( + a)
cos a

X cos o - d2 tan2 a sin 0 cos 0. (B8)

spheroidal coordinate system. The three unit normals for
this system are given by

= ((1 - 22)1 cos(¢ i oa)5 + ((1 - A2)i/2 sin(q ± a)5
(~2 + 2)1/2 (W + 02)1/2

W 2( W 2,~

= =-n (t + 1)1X2 S(0 )X- (2 + 1) /2 ( a)
(W + 01)/2 Co( W ~ ~ + 772)1/2 Sn(1 5

+ (1- 2)1/2
(42 + 2)1/2 '

= -sin(o + a)x + cos(o : a)5, (Cl)

where x, , and 2 are the unit vectors in the Cartesian coordi-
nate system. We have made use here of the definition of the
azimuthal angle 0 ± a in a plane other than the plane of the
waist. Furthermore, we shall use the definitions for tan a
and cos a given in Eq. (20).

Since the incident ray has the same trajectory as a skew
line, its vector representation can be found from Eq. (B7).
For a skew-line trajectory with a clockwise twist (-a), the
incident ray is the unit vector

a = (sin 0 sin 0)1 - (sin 0 cos 0)5 + (cos )2.
Simplifying terms results in

t s = d2 tan a sin cos 0 [sin cos( + a)
cos a

+ cos k sin(o ± a) - sin a]. (B9)

Next, we expand the term in brackets to find that

t s - sin 0 cos 0 [sin (cos cos a - sin 0 sin a)
cos a

± cos (sin cos a + cos sin a) - sin a]

d a a sin 0 cos [sin a(tsin2 g * cos2 )- sin a],

(B10)

and, finally,

t - S = 0. (B11)

Therefore the skew line is perpendicular to the elliptical arc
PA.

In order to find the plane containing t and a, it suffices to
find the normal to both t and a, since this is also the normal
to the plane containing the two vectors. The unit normal
can be found by taking the cross product of for a negative e
and a, thereby obtaining

Ci- ____2____ 1__2__X = _ COS(0 - a)i2 X
la X l ( + 772)1/2

77 sin(k - a)(q2 + 1)1/2 (1 - 772)1/2 
(W2 + 2)1/2 (02 + 2)1/2

(C3)

This is simply I.
Next, we calculate the angle between the incident ray and

the surface normal, which is

Cos-I(a. t) = Cos-1
I sin a sin2

0 + cos 2 0 
LCos a(tan2 a + Cos 2

o)1/2j

Reduction of the term on the right-hand side leads to

Cos- 1 (a ) = cos-'[(sin2
a + COS2

0 COS2 a)1/2].

(C4)

APPENDIX C: REFLECTION OF A SKEW-LINE
RAY FROM AN ELLIPTICAL MIRROR
In geometrical optics, the laws for reflection are

1. The reflected ray lies in the plane formed by the inci-
dent ray and the surface normal.

2. The reflected ray forms an angle to the normal that is
equal but opposite that of the incident ray to the normal.

Since the reflective surface is an oblate ellipse, its normal is
simply the unit normal for the oblate ellipsoid in the oblate

(C5)

In determining the reflected ray , we know that it must lie
in the plane formed by and and must therefore be per-
pendicular to . Also, the angle that makes with must be
equal to and opposite cos-1 (Ct - ). Expressed in terms of a
dot product, the latter condition is

L t = (C6)
Finally, the angle formed by tz and must be twice that of -
&. This condition can also be expressed in terms of a dot
product as

a * = 1 - 2(a * ) 2. (C7)

B. Tehan Landesman
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Taken together, these conditions will produce the three di-
rection cosines of the vector L.

If the vector L is given by

=a + b + c, (C8)

then the three simultaneous equations to find a, b, and c are

-cos 0 cos(k - a)a - cos 0 sin(k - a)b
+ (sin a sin 6)c = 0,

sin a sin 0 cos(q - a)a + sin a sin 0 sin(o - a)b
+ (cos 6)c =-sin a - cos' 6 cos2 a,

(sin 0 sin Oa - (sin 0 cos O)b
+ (cos 6)c = 1 - 2(sin2 a + cos2 0 cos2 a).

(C9)

The resultant reflected ray is given by

L = sin 0 sin(o - 2a)l - sin 0 cos(o - 2a)5 - (cos 0)2,
(C10)

which is a skew-line vector on the same hyperbolic envelope
as a pointed in the direction of the waist with an endpoint at
the point of reflection.
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