Chapter 1

Introduction

The aim of sound reproduction systems in cinemas is to peoaitdigh quality listening

experience, accurately reproducing the recording for &tgrer in the audience. The
horn loaded loudspeaker is a component often used in cinemnadssystems, and in
related live sound reinforcement systems. This device ésl tecause it is an efficient
audio transducer, with some control over the spatial distion of sound away from the
horn mouth. The sound distribution, or beamwidth, is reldatethe shape of the horn and
it is critical for listening quality that the sound be disited evenly onto the audience
at all frequencies. The beamwidth is not predicted adetulbyeexisting analytical horn

models, and the aim of the work described in this thesis igteldp a method to optimise

the shape of the horn to give a smooth frequency independantwidth.

1.1 Background

Horn loaded loudspeakers consist of two main componentsmgession driver; and a
horn flare. The compression driver, a special kind of movinijloudspeaker, produces

the sound. The horn flare, with its gradual change in crossoseat area from throat



2 Chapter 1. Introduction

to mouth, increases the efficiency of the sound radiationHanging the acoustic im-
pedance seen by the compression driver diaphragm. Thisstieatriess amplifier power
is required for a given acoustic output, and is the tradéioeason for the use of horns in

audio.

Horn flares are also used to control the spatial distributfdthe sound radiated from the
horn mouth (the beamwidth). In the case of cinema audio, gtitgcal to the listening
experience that the sound can be distributed evenly ontaulience at all frequencies
(frequency independent beamwidth) with no variation irumeé with frequency (smooth
frequency response). Horn design methods published inai$te30 years have often
emphasised control of beamwidth rather than frequencyoresp This is because the
former can be gained at the expense of the latter by a shapsh witroduces internal
reflections in the horn, and the resulting poor frequencpoese can be compensated
by using a larger amplifier and level equalisation. Thus modern design is often
a compromise, and beamwidth control achieved at the expainseund quality (See
Holland, 2003, for a discussion of the issues of horns indimend as many of the issues
raised there are similar to those of the cinema industrys.iittended that this thesis will
contribute to the understanding of the physical mechansivsund propagation that
occur in horns, with the aim of producing horn designs thaieae beamwidth control

without compromising sound quality.

In summary the aim of horn design for cinemas is twofold: todoice an easily specified
frequency independent beamwidth; and to provide a smoetiuéncy response over as
large a bandwidth as possible. The overall aim of this tHedsdevelop fast and reliable
optimisation techniques for horn loaded loudspeakers thighntention of developing a

better horn design method for cinema loudspeakers.
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1.2 Motivation for this research

A review of the horn literature reveals that WebsteHsrn equation is most often used
to estimate the performance characteristics of horns geavihere is a smooth variation
in cross sectional area with distance along the horn axisddiéothat use this equation
generally tend to estimate acoustic impedance to a reasotedree of accuracy, at least
for low frequencies, but most acoustic horn models do notrately estimate far field
acoustic pressure either on or off axis. This leads to thelasion that while these simple
models may be suitable for optimisation to produce a smaetijuency response within
the limits of validity of the Webster equation, they would be suitable for optimisation

of the beamwidth.

There is evidence in the literature (Holland et al., 1991(Cbia et al., 2000, 2001) that
variations in pressure and acoustic particle velocity s&tbe mouth of the horn (higher
order modes) can be significant at some frequencies. Althallgpf the models based
on Webster’s approach assume that this variation is nédgidpoth inside and outside the
horn, a simple measurement of the sound field at the moutheofidhn would confirm
this. This measurement, along with the measurement of thiefd pressure, would allow
an examination of the validity of numerical models of horaded loudspeakers. Thus,
the need exists for experiments that measure both the nédasound radiation field of

horn loaded loudspeakers.

Alternative approaches to modelling acoustic horns suétirate Element Analysis (FEA)
or the Boundary Element Method (BEM) have been found in ttezdture. However,

while these methods can eliminate problems associatedhatapproximate equation of
Webster, it has been found that 3-D FEA is intractable fogdanorn models and high
frequencies, and unsuitable for application to optimsatechniques (Morgans et al.,

2000). There is also evidence that 3-D BEM is similarly utehle at the mid to high

The origin of this equation is commonly attributed to Web$1©919) in the horn literature. However
Daniel Bernoulli, Lagrange and Euler first derived it in ti&tH.century (Eisner, 1967).
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frequencies needed for cinema applications (von Estd®df02. Thus the need exists for

efficient and accurate numerical models of acoustic horns.

The optimisation of horn loaded loudspeakers to producesaatkoutcome has been at-
tempted previously. Examples include an optimisation efdbamwidth of a horn loaded
woofer using a 3-D BEM (Miccoli, 1999), the optimisation dfet frequency response
of a horn loaded tweeter using axisymmetric BEM (Henwoo®3l%eaves and Hen-
wood, 1996), and most recently FEA to optimise the frequeasponse of a planar horn
(Bangtsson et al., 2003). None of these methods have be&edifgpboth beamwidth and
frequency response of the type of horns used in cinema |@adtep systems. Thus the
need exists for the development of fast and robust optimis&chniques that will pro-
duce a horn geometry with a specified frequency independErhividth and a smooth

frequency response over as large a bandwidth as possible.

In response to the issues raised above, the specific aims ofithent study are as follows;

e To examine experimentally the nature of the sound field at théhorn mouth
(near field) and the horn beamwidth (far field).
These experiments, whilst obtaining data for the validatibsubsequent numerical
models, will look at the validity of currently used numetit@rn models and the

existence of higher order modes at the horn mouth.

e To develop fast and accurate numerical models of horn loadebbudspeakers.
These models should be able to predict the beamwidth to bdeaecuracy suitable
for optimisation, given the horn geometry. The techniqueusthbe suitable for both
axisymmetric and 3-D simulations, and should be as fast ssilple because many

different geometries will typically be evaluated during@ptimisation procedure.

e To develop fast and reliable optimisation techniques for hm loaded loud-
speakers.

These optimisation techniques should reliably find a hoapshthat satisfies the
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given horn design aims, provided these aims are physicadlysable. Initially the
technique would be developed for axisymmetric horns, betniethod should be

general and applicable to 3-D horns.

1.3 Overview of the Thesis

This thesis begins in Chapter 2 with a thorough review of ifeedture relevant to mod-
elling and optimising horn loaded loudspeakers. It givegn&moduction to horn loaded
loudspeakers, and describes traditional modelling agexsaand their limitations. The
applications of alternative modelling techniques for hlmaded loudspeakers found in

the literature are critiqued, as are horn optimisationnegies.

Chapter 3 presents experimental results examining theenafuthe sound field at the
mouth of two small axisymmetric horns. An automated trayesgstem has been used
to measure the pressure across the mouth of each horn, aresthies decomposed into
cylindrical modes. The circumferential variation of theurd field is examined, and
existence of plane waves above a certain limiting frequéested. These experiments
are needed to examine the validity of currently used nurakhiarn models and test the

hypothesis that higher order modes exist at the horn mouth.

Numerical models able to accurately and quickly calculatefar field pressure from
arbitrary structures are investigated in Chapter 4. Regltained from the analytical
solution of a vibrating cap mounted on the surface of a spasrecompared with two
alternative boundary element based numerical methodsadtheacy and speed of the far
field pressure solution for both methods is examined. Teghes that speed up solution

time without compromising accuracy are investigated.

Chapter 5 compares results from experiments with two reptesive horn loaded loud-

speakers with the numerical methods described in the Chdpt&he capability and

Horn Loaded Loudspeakers. Richard C. Morgans.
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range of validity of the source superposition techniqueg@oann and Fahnline, 1997)
in modelling horn loaded loudspeakers is investigateds s iapplicability for use as a

component in optimisation techniques.

In chapter 6, the concept used in the development of a CarBeamwidth Transducer
(CBT) (Rogers and Van Buren, 1978) is explored in relatiomdon design. Specifi-
cally the nature of the frequency independent beamwidthvisstigated, giving cues as to
how to design a horn loaded loudspeaker to achieve a freguletependent beamwidth.
Further, robust optimisation techniques are introducenvestigate their applicability to

horn shape optimisation in future chapters.

Chapter 7 draws together the work of previous chapters teldp\a method to optimise
the geometry of a horn to give a specified smooth beamwidtk.geometry of the horn
is parameterised, and the source superposition technggekta calculate the beamwidth.
An investigation is made of a geometrically simple horn peofonsisting of an essen-
tially conical horn with a radiused entry at the horn throatl & radiused flare at the
horn mouth. The ability of this geometry to achieve the aggsimominal beamwidth is

investigated, as is the the effect of throat radius on thiopaance of the system.

More complicated geometry parameterisations are inveggtiy and a Bézier spline based
geometry is found to be flexible enough to define a shape tipmbaphes constant beam-
width behaviour, although it may not be able to find a desirethinal beamwidth. This

geometry parameterisation is then solved repeatedly fade mnge of lengths and throat

dimensions, and a method developed to enable an optimuigrdesbe quickly found.

Finally, in Chapter 8 a summary of the work completed in thissis is given. It clearly
states the contributions to current knowledge in the opttion of horn loaded loud-

speakers, and gives recommendations for future work.
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Chapter 2

L iterature review

This chapter provides a thorough review of the literatuteviant to modelling and opti-
mising horn loaded loudspeakers. It gives an introductiohdrn loaded loudspeakers,
and describes traditional modelling approaches and timgitations. The applications of
alternative modelling techniques for horn loaded loudkpesafound in the literature are

critiqued, as are horn optimisation techniques.

2.1 Background

Acoustic horns have been used for over 100 years to providiedsm consumer equip-
ment, theatres and public address systems (Hilliard, 19P6)bably the most famous
image of an acoustic horn is that in the painting “His Mast&fice” (see Figure 2.1)
where a small dog is seen staring attentively at the moutm@caustic horn, waiting
for his master’s voice to speak. Acoustic horns are also asezbmponents of musical
instruments, for example the flared ends of brass or woodimstduments Keefe (1990).
Geddes (1989) describes the difference between these ®gasshorns designed for

soundreproductionand soungroduction,and suggests that characteristics desirable for
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sound production may not be compatible with the performarfi@idio reproduction de-
vices, and vice versa. The purpose of the work describedifeoemodel and optimise

sound reproduction devices, and specifically horn loadeddpeakers.

Figure 2.1: The famous oil painting "His Master’s Voice" bsakcis Barraud (1895) of the dog
Nipper and an Edison-Bell cylinder phonograph, using a horead the mechanical transducer
to provide the “amplification” necessary to hear the reaaydi

Horn loaded loudspeakers are used as components in cinemd spstems (Figure 2.2)
because of their ability to produce high sound pressurdd@fiiciently, and their ability
to control the direction in which the sound is distribute@iothe audience. Hilliard (1976)

gives compelling evidence for the use of these speakermagste

“The overall electrical to acoustic efficiency on horn-typgstems ap-
proaches 20%. This is a very high efficiency when one corssitiat a typ-
ical modern home entertainment speaker system is only 0% efficient.
Utilising a horn-type system, less amplifier power is regdifor theatres of
1000 seats to generate the same loudness as would be pradunedverage

living room with conventional cone-type speaker systems.”

2.1.1 Loudspeaker components

A horn loaded loudspeaker consists of two main componemizgression driver and a

horn flare (see Figure 2.3). From here on, the taom will generally refer to the horn

The University of Adelaide. Department of Mechanical Emrggring.



2.1. Background 9

Figure 2.2: Commercially available cinema loudspeaketesys The horn loaded loudspeaker is
mounted on top of a low frequency direct radiator loudspeaked the system is located behind
the cinema screen.

flare, and the terrhorn loaded loudspeakaevill refer to the combination of compression

driver and horn flare.

Small rear Loudspeaker  Abrupt change

box & diaphragm in cross sectional
[ )

\—'—‘ \ Horn Flare
Gradual change

Compression in area
Driver

Figure 2.3: Schematic of a horn loaded loudspeaker systéra.sdurce of the sound, the com-
pression driver, consists of a small (usually titaniumptiagm driven by a conventional electro-
magnetic drive (voice-coil and magnet) positioned in froh&n abrupt change in cross sectional
area. The flare changes the cross sectional area gradumatitiie throat through to the mouth of
the horn.

Horn Loaded Loudspeakers. Richard C. Morgans.
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Compression drivers

The compression driver, as shown in Figure 2.4, convertsredal inputs into mechanical
motion of a diaphragm (typically titanium) through an eteetnechanical drive (voice
coil and magnet). The movement of the diaphragm producetudtions in pressure,
which act through a small cavity, a change in cross sectiared (a compression ratio),
and a series of small channels (a phase plug) to enter theahdine throat of the flare.

There is then a further change in cross sectional area thrimutipe mouth of the horn.

Voice Coil ™~ Diaphragm

Figure 2.4: Schematic diagram of a compression driver. étemred from Colloms (1997).

Most manufacturers of horn loaded loudspeakers purchaspression drivers from sup-
pliers as pre-fabricated components, and generally htlesitifluence over their design.
The modelling and design of compression drivers, and sirdé&ices such as direct ra-
diator loudspeakers have been covered previously in #mtiire (Geddes, 1987, Leach,
1979). Thus, consideration of compression driver modgismot included in this thesis.
However, loudspeaker system manufacturers are concebpoedthe performance in con-
junction with a particular horn flare design. Although nohsmered in this study, such
design issues can be solved by the experimental charattenf compression drivers,
adapting techniques used by other researchers (McLean 282, Abom, 1989, De Blok
and Van Den Brink, 1993, Behler and Makarski, 2003).

The University of Adelaide. Department of Mechanical Emrggring.
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Horn flares

The horn flare component, with its gradual change in crossoset area from throat to
mouth, increases the efficiency of sound radiation by matcthe acoustic load driven
at the horn throat. Horn flares are also used to control thea$plstribution of sound

radiating from the horn mouth.

For horns used in large scale public address systems, thkohthe sound distribution
can be used to advantage by arranging a series of horns ¢éogetan array to achieve
maximum overall sound coverage with minimal destructiverierence at the fringes of

an individual horn’s coverage (Brown, 1995).

An approximate equation (Webster, 1919) can be used to &tithe performance char-
acteristics of horns, provided the function that govermsdhiange in cross sectional area
is simple. These types of horns are usually named by theitumgbverning the increase

in area, (exponential, catenoidal or hyperbolic hornsjheir shape (conical horn).

2.1.2 Sound quality metrics

In the case of cinema audio, it is critical to the listeningenence that the sound be dis-
tributed evenly onto the audience at all frequencies (feegy independent beamwidth)
with no variation in volume with frequency (smooth frequgmesponse) (THX, 1996).
It is also desirable that distortion of the signal by the hitself is minimised. In order to
assess the sound quality of existing speakers and compardasggns it is important to

have well defined measures of sound quality.

Beamwidth

The general characteristics of sound radiation from thetmotia circular horn can be

described by considering a simplified physical model of enHoaded loudspeaker; a

Horn Loaded Loudspeakers. Richard C. Morgans.
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spherical cap mounted on the surface of a sphere (Morse galdn1986). A rigid,
massless spherical cap of the same radauss the mouth of the horn vibrates with a
prescribed radial velocity, and is set flush on the surface sghere. Figure 2.5 shows a

schematic of this simplified representation.

Velocity / Velocity /

distribution distribution over
at horn mouth spherical cap on
surface of sphere

Figure 2.5: Simplified physical model of horn loaded loudsge. The velocity at the horn mouth
can be approximated by a velocity distribution over a sgiakigap on the surface a sphere.

The distribution of the sound field in front of the sphere ganvith the frequency of exci-
tation. A suitable non-dimensional measure of frequen&g,ishe ratio of cap circumfer-
ence to wavelength of soundl, wherek = 211/A is the wavenumber. Figure 2.6 shows a
polar plot of the magnitude of the measured pressure, ngethby the maximum pres-
sure, for a 45 vibrating spherical cap, for three different non-dimensiofrequencies,

ka= {3,10,20}.

It also plots the beamwidth, or coverage angle in a planenelgfas the “angle formed by
the -6dB points (referred to the on-axis reading) and thecgocenter” (Davis and Davis,
1997). The beamwidth is a measure of the distribution of donthe specified plane. At
low frequenciesKa= 3) the sound is almost omni-directional and the beamwidtrgse.

At higher frequenciesk@ = 10) the sound converges toward the axis and the beamwidth
becomes narrower . At some frequencies- 20), the sound pressure on the axis is less

than the pressure off axis (on axis null), and the beamwidtoimes artificially widened.

The variation of beamwidth with frequency for a*ABbrating spherical cap on the surface

The University of Adelaide. Department of Mechanical Emrggring.
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- ka =3
=== ka=10
- ka =20

2900 Frmmrme b N 90°

6dB

Figure 2.6: Far field polar plot of the magnitude of the meaguypressure, normalised by the
maximum pressure, for 45° vibrating spherical cap on the surface of a sphere. Bearhvigdt
also shown for each frequency.

of a sphere is shown in Figure 2.7. This shows the omni-doeat coverage at low

frequencies and the narrowing at mid to high frequencies.

Chamness (1994) discusses deficiencies associated witheagurement of beamwidth
and that of directivity, another measure of sound distridsutelated to the relative amount
of on-axis to off-axis energy, and proposes methods to oveecthem. Specification of
the beamwidth variation with frequency for both the horizbrand vertical planes has
long been industry practice (Davis and Davis, 1997) and meeently and importantly
has been used by Lucasfilm, an important industry body, ifT Hé (1996) specification

of sound quality requirements for cinema loudspeaker syste

The characterisation of loudspeaker coverage in a singleeplor in two orthogonal
planes, does not account for off-plane (e.g. non verticdlasizontal) variations in the
sound field. Various studies have tried to develop more ogerepresentations (Baird

and Meyer, 1999, Angus and Evans, 1998).

Horn Loaded Loudspeakers. Richard C. Morgans.
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Figure 2.7: The variation of beamwidth with frequency fot% vibrating spherical cap on the
surface of a sphere.

Frequency response

A smooth frequency response is critical to the listeningeeigmce, and the reproduced
sound should not exhibit large variations in volume at défe frequencies. A theoreti-
cal analysis of “infinite” horns (Beranek, 1986, Pierce, 4P8hows that below a certain
frequency horns cannot transmit power, and the correspgrsgiund volume will be low.

Real horns exhibit this behaviour as well (Molloy, 1950)ddhis phenomena is consid-
ered an inherent characteristic of horns. Low frequency$iof necessity are large, and
the horns considered in this thesis are the relatively shgli frequency components of

the cinema loudspeaker system.

Fahy (2001, Section 8.11) describes the rationale behimdy usrn loaded loudspeak-
ers to increase transducer efficiency without introducerge variations in frequency
response. He suggests that there is considerable advantagi@g a “stiff, lightweight

diaphragm of small diameter, provided that appropriategn radiation resistance can

be offered to it”, and that this radiation resistance shd@drequency independent. The

The University of Adelaide. Department of Mechanical Emrggring.
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stiff, lightweight diaphragm of a compression driver, altad to an anechoic termination
at the end of a tube would offer the highest frequency indéeenradiation resistance,
but this device is impractical for sound reproduction. Tratng the tube at a fixed length
would lead to reflections from the tube mouth, and large tiana in the frequency re-
sponse (see Fahy, 2001, Figure 8.7). A mode ideal situaiarhorn which increases its
cross section gradually from the compression driver exil tire mouth is large enough
to radiate sound efficiently, minimising reflections andvyidong a smooth frequency re-
sponse. Keele (1973) describes a method to match the impedéan exponential horn
section with the radiation impedance of a piston, giving aptimum horn mouth size”

that produces an optimal frequency response.

Sometimes the frequency response is not the primary desitgni@n (e.g. beamwidth
or horn size may be more important), and equalisation of ripati signal is required.
Yashima et al. (1995) describe the use of digital signal ggemg to improve the fre-

guency response of horn loaded loudspeakers.

Distortion

Distortion in horns is still a key sound quality metric, ameéte have been a number of
attempts to model and compensate for various types of dmtqilCzerwinski et al., 1999,
Schurer et al., 1995). As distortion is a non-linear phenuoneit is usually examined in
the time domain, whereas most linear acoustic modellingrsda the frequency domain.
Most distortion in horns is generated by non-linear behavad air in the compression
driver, and is thus considered an input to the horn itselst@tion modelling is beyond
the scope of the current work, which will be constrained talgiing the linear behaviour

of horn loaded loudspeakers.

Some types of horn loaded loudspeakers have been reporthd literature to have a
characteristic sound (Holland et al., 1996). Holland ()%&®ibuted this to reflections

from the horn mouth, an inherently linear phenomenon, ratren non-linear distortion.

Horn Loaded Loudspeakers. Richard C. Morgans.
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2.1.3 Existing design approaches

There are many approaches used in designing horn flareshesel have changed over
time to reflect the changing technology and requirements®faldio reproduction in-
dustry. Geddes (1989) covers some aspects of changingndesighasis in his review
of horn theory and Hilliard (1976) provides a historicaliesv. Holland (2003) gives an
excellent overview of horn loaded loudspeakers for livenshwvhich is very similar in

requirements to the cinema industry. A brief overview ofigespproaches is given here.

Initially, horn shapes were axisymmetric, or mostly so vaifiew gradual bends (as shown
in Figure 2.1), and the horn was viewed as primarily a loadiegice to improve ef-
ficiency. Indeed, for phonographs needing purely mechbgaa (i.e. no electronic

amplifier) the horn was an essential part of the system.

Improvements in amplifier technology have reduced the itapae of efficiency as a
horn design criteria. It was found that the degradation ianb&idth of axisymmetric
horns with increasing frequency, and their equivalent heighh in both horizontal and
vertical planes was too limiting. Some control over the be&ith was provided by multi-
cellular and radial/sectorial horns (see Hilliard (19°&8)d Figure 2.8), but their frequency
response suffered from significant peaks and troughs. bssiple to “equalise out”, to
some extent, the peaks and troughs in the frequency respgretéenuating certain fre-
guency bands until the overall response is flat. This resulke overall gain of the system
being lower, counteracting one of the advantages of horesdivect radiator loudspeak-
ers, and care must also be taken to avoid introducing distorBauman et al. (1993)
suggest that #at frequency responseontrol of directivityandreduction of distortiorare

key components in designing modern horns.

Keele (1975) also finds several problems associated with¢henwidth of radial / sec-
torial horns, but developed “the foundations of currennhaesign philosophy” (Geddes,

1989) with the constant directivity horn. Figure 2.9, aéaipirom Murray (2000), shows

The University of Adelaide. Department of Mechanical Emrggring.
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NOTE: This figure is included on page 17 in the print copy of the
thesis held in the University of Adelaide Library.

Figure 2.8: Horn designs for greater control of beamwidth, reproduced from Holland et al. (1991).

a constant directivity horn. Keele suggested a design where a small exponential horn
section, here called the flute, provided loading to the device, and a conical horn, here called
the flare, could be attached to this to provide beamwidth control. The interface between the
flute and the flare is called the “diffraction slot”. He discovered that an outer flange could be
attached to stop “mid-range polar narrowing”, where the beamwidth narrows in the mid-
frequency region before returning to the design beamwidth. Modelling of the effects of
flanges on horn radiation performance are discussed by Geddes (1993, 2002) and also by
Johansen (1994). The culmination of Keele’s work led to a Patent (Keele, 1982) and a horn

design that still competes in the market today.

NOTE: This figure is included on page 17 in the print copy of the
thesis held in the University of Adelaide Library.

Figure 2.9: Constant directivity horn of Keele (1975) , adapted from Murray (2000).

The “Manta-Ray” horn of Henricksen and Ureda (1978) is another constant directivity de-

Horn Loaded Loudspeakers. Richard C. Morgans.
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sign approach that provides good control of beamwidth. It was “designed from the mouth
inward”, and the authors admit that this control is possibly at the expense of frequency

response, because the horn was designed with smooth frequency response as a
“secondary consideration”. Figure 2.10, adapted from Murray (2000) shows a Manta-

Ray horn. The horn shown in Figure (2.2) is also a derivative of the “Manta-Ray” design.

NOTE: This figures is included on page 18 in the print copy of the
thesis held in the University of Adelaide Library.

Figure 2.10: Manta Ray horn of Henricksen and Ureda (1978), adapted from Murray (2000).

In both the constant directivity and “Manta-Ray” horns, reflections from discontinuities
and the horn mouth are detrimental to the frequency response. Holland et al. (1996)
suggests that mouth reflections are a contributing factor to the sound quality of horns.
Murray (2000) also discusses a problem that occurs when the sound from a number of
horns is combined in an array. The “apparent apex” is the apparent centre of the sound

when the far field is extrapolated back into the near field. In constant directivity and

Horn Loaded Loudspeakers. Richard C. Morgans.
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“Manta-Ray” horns, the vertical apparent apex and the amadiwtal apparent apex are

in different positions, rendering the performance of asrafyhorns ineffective.

Geddes has used an innovative approach to the design of, tlweihke calls the “acoustic
waveguide” design, but his work (Geddes, 1989, 1993, 2082)tund little acceptance
in the industry, possibly due to the daunting mathematiesire of the analytical mod-

elling approach, although Bauman et al. (1993) use the désigtadium sound systems.

The aim of the work detailed in this thesis is to provide aglesipproach, and ultimately
a design method to calculate the required shape of a horrvéobgith a flat frequency

response and adequate control of beamwidth without compnogoverall output.

Horn Loaded Loudspeakers. Richard C. Morgans.
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2.2 Simple horn models

Webster (1919) is often cited as the major work in the fieldayhttheory, and the equation
derived to describe the propagation of sound in tubes thgtinaross section along their
length is called the Webster horn equation. However Eish@67) (see also Campos,
1984), in areview and bibliography of horn theory, credigsi2l Bernoulli, Lagrange and
Euler in the 18th century with discovering the horn equatibie suggests that Webster
should instead be credited with introducing the concepaobustic impedance”, the ratio

of average acoustic pressure to volume velocity at a plarewtide audience.

For a very thorough review of the derivation and applicépitif the horn equation, see
Putland (1994, Chapter 3), and Putland (1993). He expandheosoncept of a one-
parameter acoustic field, introduced by Morse (1976), défase“a solution to the wave
equation depending on only one of three spatial coordihateéatland proves that the
only coordinate systems that can sustain an exact one paesoéution are “those whose
level surfaces are parallel planes, coaxial cylinderspacentric spheres”, or in terms of
geometry: rectangular ducts; cylindrical tubes or cylicarsectorial horns; and conical
horns. This work has implications for horn modelling, as¢bexmonly used exponential
horn is notexactlydescribed by Webster's horn equation, but Putland (1998ti@e

5.5) describes in detail criteria under which the wavapgroximatelyone-parameter.
These criteria generalise to a “cross section that varigsgmadually” assumption and

exponential horns with low flare rates fit this criteria.

Webster (1919) solves his equation for the degenerate ¢asst@aight tube, and a coni-
cal, hyperbolic and exponential horn, and Salmon (1948)dhices a more general series
of approximately one-parameter horns ranging from a cadahborn, through exponen-
tial to conical in shape. (Molloy, 1950) found these modedsful for the design of ax-
isymmetric horns of the given shapes at low frequenciesybled = 1.2. Mawardi (1949)
solves the general case by using both an electrical analutjth@ singularities of the dif-

ferential equation, and states that “the horn contoursitae¢ been studied are very few
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in number” and that “this is due to the difficulty of solving W&er's equation exactly

when the horn contours are of arbitrary shape”. Mawardi’gvi®not widely referenced.

The approaches outlined by Webster (1919) and Salmon (184&) been the most ac-
cessible to the audio engineering community and have beeth egensively for horn
design for calculating the cut-on frequency (Section 3.4l size of these horns. These
approaches have been used even wherapipgoximatelyone-parameter criteria are not
strictly applicable, such as in the constant directivitgida of Keele (1975). In these
cases, although the analysis is useful for preliminarygfeand general concepts, there is
a need for analysis methods that overcome the limitatidmsrent in Webster’s equation:
the accuracy of the analysis under conditions where the anengeter approximation

breaks down; and the ability to solve the equation easilyrfore general shapes.

Most modern approaches to modelling acoustic horns ovezdbmn difficulties in solv-
ing Webster's equation in complicated geometries by theafise transmission matrix
approach (Lampton, 1978, Patrick, 1979). This numericahoeis useful in modelling
complicated electro-acoustic systems by breaking theesysiown into smaller compo-
nent parts. Each acoustic component can be described byZar@atrix that relates the
average pressupeand the volume velocity at the input to the same quantities at the out-
put, and similar relations can be found to describe mechaaid electronic components.
The entire system can then represented by a cascade of stritesiaLampton (1978)
summarised the use of transmission matrices in electrostics and Patrick (1979) gives

a useful overview in the context of duct acoustics.

The wide adoption of the transmission matrix method (Ke&®84, 1990, McLean et al.,
1992, Mapes-Riordan, 1993), and other similar methodschase&ascaded components,
such as the use of the electronics analysis package SPIGEutte acoustic horns by
Leach (1996), and the stepped exponential horn method déiktbet al. (1991), is prob-
ably due to their ease of implementation and numerical lstalduch models also allow

the modelling of the acoustic path back to the compressimeddiaphragm, through the
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mechanical and electromagnetic components to give th&riekanput impedance of the
horn loaded loudspeaker, a quantity that is easily measwrelde loudspeaker designer

and can be used to verify the design.

Care must be taken when using the transmission matrix apiprohe method is able
to easily obtain solutions to complex horn shapes with sestbf rapid change in cross
sectional area, such as the constant directivity desigrL@éc et al., 1992). However,
these designs stray from the approximately one parameteriarof Putland (1993), that
the “cross-section varies only gradually and remains somatipared to the wavelength”,
and the validity of the result obtained is in question. Mabea al. (1992) mention this
deficiency and suggest improvements related to incorpmydtigher order modes into

their model (see Section 2.3.2).

In modern literature there are an abundance of approactiesy, than the transmission
matrix method, used to solve Webster’s equation: Hollaral.€t1991) applied numeri-
cal integration to a transformed version of the Webster gguaa first order differential

equation describing the harmonic time dependence of the@lexpressure reflection co-
efficient; Kergomard (1998) applied continued fraction axgons to the problem; and
Arenas and Crocker (1999) used the Wentzel-Kramers-Blim@wKB) approximation

to solve Webster's equation for a cosine shaped horn. Theralso time domain ap-
proaches for modelling musical instruments (Berners, 198%imple extension to the
Webster equation by Benade and Jansson (1974) (see alsodamsl Benade, 1974) al-
lows for the existance of both plane and spherical wavesmtlihorn, and the conversion

of energy between these modes.

Methods of solving Websters equation are still very muchraa af active research, see
for example Rienstra (2002), Hélie (2003) and Martin (20@®ain, these methods only
look to solve Webster’s equation more rigorously, or in mmmplex shapes, and do not

address the inherent deficiencies in the underlying equatio
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2.2.1 Modern simple horn models

The work of Holland et al. (1991), McLean et al. (1992) and EsyRiordan (1993) are

the most prominent in the horn literature and deserve furéhaew.

Holland et al. (1991) applied modelling techniques usingeped exponential horn to
simulate the throat impedance of horn geometries that vam &1 simple shape. After
initially solving the Webster equation numerically, anding that in this formulation
the approximation to the flare rate was constant over an ‘@mwhich was exactly
equivalent to a short exponential horn section, they foliatla more stable solution was
achievable, and that the number of elements in the model @ated to the “degree of
departure of the horn shape from exponential”. After givinghysical explanation of
horn behaviour and measuring the amplitude and phasebdistn of pressure across the
mouth of a large axisymmetric horn, they applied an extenidhe stepped exponential
horn model to account for wavefront curvature, which inseshthe ability of the model
to accurately represent a wide variety of horns. They regdtiat predictions of transfer
impedance, the ratio of the pressure at the mouth of the lodhretvolume velocity at the
throat, were 2 or 3 dB lower than those measured. They sudrthise this effect was due
to “beaming”, which is a non-uniform acoustic particle @ty profile across the mouth
of the horn with bias toward the axis of the horn, and thatrth@ots clearly indicate the

limitations of the one-parameter model for the predictibthe performance of a horn”.

McLean et al. (1992) applied transmission matrix modellirsgng many short straight
duct sections of increasing diameter joined together toagimate a constant directivity
horn, and compared the results to measured data. Theitgdsulcoustic impedance
show reasonable agreement with experiment, except for earplained resonant peak.
The model over predicts slightly the magnitude of the adoustpedance at high fre-
guencies, possibly due to “radiative and viscous dampiagti shows that most of the
reflected energy occurs at the flute-flare interface (theadifion slot, see Figure 2.9).

They ascribe the unexplained resonant peak to a mechaegahance in the structure
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of the horn (presumably in the large flat surface on the sidin@fconstant directivity
horn) coupling with the acoustic field inside the horn. THhgepomenon has implications
for commercial manufacture of horns in terms of sound qualitd the design of horn
structure, and has been seen in other horns (Murphy, 200R)s beyond the scope of
the current work and will not be considered further. The waldo shows the utility of
the transmission matrix approach in calculating acoustmadance for horns of arbitrary
profile for frequencies up tka~ 30, where the dimensioais the radius of a circular
mouth of equivalent area to the rectangular horn. Howewvegamparison is made be-
tween experimental data and the prediction of acousticspres either within the horn

mouth or external to it.

By using the transmission matrix method, and taking thetlohian infinite number of
duct sections, McLean et al. (1992) show the transmissiamixmaethod is equivalent
to Webster’s horn equation (although with a possible namstant flare rate). This work
draws the discrete transmission matrix approach and thencmus Webster equation

approach together theoretically, and this is a significantrébution to horn theory.

Mapes-Riordan (1993) modelled acoustic horns using anresson approach, with both
stepped cylindrical and conical element models with tha ithat a series of short, con-
nected conical horns can model a varying horn shape witteleasents than a cylindrical
approximation. He also included both loss-free and dissip&lements (Keefe, 1984).
It was found that for “typical audio applications, the ditface between a dissipative and
loss free conical element is negligible”. There is no conguer of the horn model re-
sults with experiment, but instead there is a comparisoh miimerical simulations of a
dissipative conical element with “an asymptotically largenber of elements (100 000
elements)” because this element “possesses the mosedes#ilicture of the four mod-
els”. While an infinite conical horn satisfies Webster's hequation exactly, the use of
concatenated conical horn sections to model horns of vamgioss sectional area is not

necessarily strictly valid, and comparison to at leastital solutions of these horns

The University of Adelaide. Department of Mechanical Emrggring.



2.2. Simple horn models 25

would have been useful.

2.2.2 Radiation boundary conditions

Models of realistic, finite length horns require the moagjlof acoustic radiation from
the mouth of the horn. Some models predict the far field presssing various approxi-
mations, whereas other models are only concerned with thestic impedance presented

to the compression driver.

Most modellers assume a constant velocity across the maétitle dorn, and use the im-
pedance of a piston in an infinite baffle to represent theteegis that the air presents to
the horn. Before the use of computers to accurately cakeubet frequency dependent
impedance of a piston in an infinite baffle, Bauer (1944) ptedia widely used approxi-
mation of a resistor and inductor in parallel with approxieiaconstant coefficients. He
warns that this “Approximate treatment yields impedancersrof the order of 20 percent
or more in the important frequency range”, but describes ¢hnior as “tolerable” given

other approximations generally made when modelling horns.

The model of Mapes-Riordan (1993) assumed implicitly that horn was mounted in
the middle of a large wall, and used the piston in an infinitéldas an approximation
to the actual impedance. He states that “More research tede® develop better ap-
proximations of the radiation impedance of horns, paréidylwith large mouth flares”.
Mapes-Riordan applied a model of the far field pressure arettity to the radiation

from a resonant tube loudspeaker, but did not use this ettplic model horns.

Molloy (1950) applied the boundary conditions of a circuldre, with no flange, with the
same radius as the horn mouth. This boundary condition doase¢he work of Levine
and Schwinger (1948), is a more realistic approach when Hwagldnorns with finite

flanges than the effectively “infinite” flange boundary cdiwh with piston in an infinite

baffle, provided any horn flange is much smaller than the veanggh. Moreover Molloy
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calculates the acoustic pressure at a distance on the ate dforn, and comparison
with experiment over a relatively narrow bandwidth showsdjagreement, apart from a
discrepancy at the first resonant peak, attributed to “miliféerences between the actual

parameters of the system and those assumed for the purgasdsuation”.

Holland et al. (1991) applied the solution for radiationnfra spherical surface to a spe-
cial “external” element in their modelling of various hofmepes, and state that with their
model it is “impossible to predict the far field radiated bisthorn”, because their “hemi-
spherical shape of the mouth element would lead to every beimy omnidirectional”.
The authors claim that this approach allows the accurateettiog of the acoustic im-
pedance at the throat of the horn, a quantity found to be itapbin listening tests of
acoustic horns (Holland et al., 1996). However, the far festdustic pressure pattern,

which is of great importance to cinema horn designers, isnmaxtelled.

Radiation from spherical surfaces was also used by Ged®8¥),1who modelled the
whole horn mounted in a spherical surface. He used the raditom a spherical cap
at the mouth of the horn to calculate the acoustic radiatan | as well as the external
pressure field. Thisis the only work in the simple horn madglliterature found to report
both on axis and off axis pressure distributions. The choi@spherical cap radiating in
a spherical surface as a radiation boundary condition septeng a real, unflanged horn
is at least as valid as the standard choice of a piston in anitebaffle, and would be an
excellent choice for higher order models (Section 2.3.2pinerical coordinates. Geddes
approach does not allow for variation in acoustic parti@dgity over the spherical cap
at the horn mouth, and hence does not allow for variationadration patterns away from
the underlying model. This work does report experimentsililits for off axis response,

but unfortunately does not plot direct comparisons with etedsults.

McLean et al. (1992), when modelling the rectangular mouth oonstant directivity
horn (Figure 2.9), used a rectangular piston in an infinitldalodel for acoustic ra-

diation. They noted that for nearly square mouths, the ngetiar impedance function
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gives similar results to the impedance function for a cacuydiston in an infinite baffle.
This implies that a circular approximation to a square matibuld accurately model the
acoustic impedance at the throat of the horn. McLean et 8@3)lwere only interested
in modelling horn throat acoustic impedance, and did nenagtt to model the pressure
outside the horn. A simple extension to the rectangulaopistadiation model to include
the far field directivity would produce a horn model that aléal for variation between the
vertical and horizontal pressure patterns, albeit oneasstimed constant acoustic parti-
cle velocity across the rectangular mouth and hence the wetihs would be related to

the mouth dimensions and frequency, not the horn shape.

An interesting use of simple models of horns and acousti@tiaa is that of Keele
(1973), who presented an analysis of the optimum horn maméhfsr round horns. He
matched both the real (resistive) and imaginary (reacpeels of the acoustic impedance
at the end of the horn with the acoustic radiation impedaand,showed that this pro-
duced the smoothest frequency response. Keele stateti¢hetcuracy “depends on how
well the assumed radiation load model agrees with the aptuadical conditions at the
mouth of the horn”. The approach used is entirely theorkgtazad no comparison to ex-
periment is made and hence the actual physical conditiansi@nown. To overcome
uncertainty, he applied the matching technique to threferéifit models of radiation: a
piston in an infinite baffle, a piston at the end of a long tulmel a piston radiating into
fractional space. Results show that the optimum mouth sizeninimising the reflec-
tions from the horn mouth varies slightly with the choiceadiation boundary condition.

Again, this model is only strictly valid at low frequencies.

Most of the horn models mentioned so far are concerned withetling acoustic radi-
ation with sufficient accuracy to calculate the horn thraaiustic impedance. Some of
these horn models calculate the on axis pressure respomasge Todels do not take into
account variations in velocity profile seen across the motittorns in practice (Holland

et al., 1991, Di Cola et al., 2000, 2001), and the beamwidltutate by these models

Horn Loaded Loudspeakers. Richard C. Morgans.



28 Chapter 2. Literature review

will be the same as the assumed underlying model for mouthtrad: a round (Mapes-
Riordan, 1993) or rectangular (McLean et al., 1992) pistoan infinite baffle; a round
piston at the end of a long tube (Molloy, 1950); or a spherigg mounted in a sphere
(Geddes, 1987). Hence there is a need for models of hornddadespeakers that in-

clude the effect of varying acoustic particle velocity asthe mouth of the horn.

2.2.3 Propagating higher order modes

Above a certain frequency, called the cut-on frequencyhén@rder modes of sound can
propagate in ducts (Pierce, 1994, Morse and Ingard, 1986¢sd modes propagate at
different speeds in the duct, but all oscillate at the saeguency, are linear in nature and
are not related to non-linear phenomena such as distofelow the cut-on frequency,

these modes decay exponentially with distance from the&toyn (evanescent modes).
Both propagating and evanescent modes result in varia@mind pressure level across
any duct cross section, and the pressure at any point in tttecen be considered to be
made up of the orthogonal contribution of all modes. SecBdndescribes the theory of
circular modes and Figures 3.13 to 3.16 show a graphicakseptation of some mode

shapes in a rigid walled circular duct.

The cut-on frequency, for higher order modes circular cross-sectioned ductsagy,

2001, Page 220),

1.84c
fo=—— 21
c= @.1)

wherec is the speed of sound aradis the duct radius. Table 2.1 shows the cut on fre-
quencies for typical horn throat and mouth dimensions usdtis thesis withc = 343

m/s.

Typical frequencies of interest are between 400 and 120Q0aHd these calculations
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Radius| Cut on frequency

(m) (Hz)
Throat| 0.025 4020
Mouth | 0.165 610

Table 2.1: Cut of frequencies for higher order modes

show that is is possible for higher order modes to propagatgrcular ducts at these

frequencies, and it is probable that higher order mode$ iexi®rns.

There is much evidence for the need to include higher ordelesiin calculations involv-
ing acoustic horns. Geddes (1993) concludes that depasfieeperimental data from
predictions made with an idealised view of wave propagatidrorns, the one-parameter
behaviour encapsulated in Webster's horn equation, “istlyndsie to the presence of

higher order modes”.

Hudde (1989) compared solutions obtained using a higheararsbde modelling tech-
nique, applied to arbitrary shaped transitions betweendalucts, to a low frequency
approximate method based on Webster's equation, and steiethigher order modes
have to be taken into account even when they cannot progaddctean et al. (1992)
state that their simple model of a constant directivity hiyielded reasonably accurate
results” but that they could improve accuracy by incorpagaa model for mode con-
version at the flute-flare interface (the “diffraction shtThey point out that “while no
higher order modes propagate in this region, energy isétorevanescent modes near the
discontinuity”. These comments are applicable to hornsoof smooth profile below the
cut-on frequency of a duct the size of a horn mouth. As theukeeqy increases{4000
Hz in the analysis of McLean et al. (1992)) these evanescedesibecome propagating

modes and change the variation in acoustic particle vglacitoss the mouth of the horn.
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2.2.4 Summary

From the many models of acoustic horns mentioned here, vdsiela simple one-parameter

(Webster) approach, the most important limitations areceamed with:

e accurately representing acoustic propagation, even dtémmencies, in horn shapes

that have non-ideal profiles; and

e calculating the sound field external to the horn mouth.

Therefore any models that are developed in this thesis neuablke to account for vari-
ations in the sound field through the horn cross section, badaound field external to

it.

2.3 Alternative horn models

There are many approaches that can be taken in developingaéeanodels of horn
loaded loudspeakers. One approach is an extension of thpavameter equation to
include the effect of higher order modes, either by applyrgiepped approximation to
the horn cross section or using a technique such as asymatatiysis. Another approach
is to use a general numerical technique for solving the Heltmlequation and apply it
to the given horn geometry. Some of the techniques foundaditi#rature are outlined

below.

2.3.1 The “acoustic waveguide” approach of Geddes

The approach of Geddes (1989) to the design of what he cadledustic waveguide”

horns is innovative and thought provoking. In his originappr Geddes, after a short
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review of horn theory, discussed the merits of construaihgrn by considering surfaces
defined by constant coordinate values in various coordsysems, and asking the ques-
tion “what horn contour isequiredto yield the desired performance?” rather than “what

loading properties will an arbitrary horn contour exhibit?

After examination of the 11 possible separable co-ordisgtems, he chose to use an
“Oblate Spheroid” co-ordinate system. He analysed the hgrronsidering the pressure
variation along the horn to be a function of one co-ordinatky,avhich is effectively the
one-parameter approach. This raised considerable amjeictim Putland (1993) and was

the partial topic of his PhD Thesis (Putland, 1994).

In addressing errors in the original work, Geddes (1993)pced a model of sound prop-
agating in an infinitely long oblate spheroid waveguide, sinowed that for narrow horn

beamwidths and low frequencies, the horn acted in a one¥mes manner. He discussed
the advantages of modal cut-on in the design of horns in tefriee evanescent nature of
the (oblate spheroid) higher order modes produced by asdiire compression driver) as
they travel down the horn, specifically for the case of obégtieeroid horns. Presumably
for shapes other than oblate spheroid horns a similar psaoay occur. Geddes (1993)
also proposed a method to extend the operating range of bgrdssigning the velocity

distribution of the source to reduce the modal contribuabhigher order modes.

By considering an infinite waveguide, Geddes (1993) assuhatdhere are no reflections
from the mouth of the horn. Real horns have reflective tertigna, and it has also
been shown that there can be significant coupling betweetentand reflected modes
(Zorumski, 1973, Muehleisen, 1996), which may be imporiandeveloping accurate

models of oblate spheroid horns.

One aspect of Geddes’ (1989) work that deserves furtheriameist the design of non-
axisymmetric horns by “squashing” the horn from a round tebiptical shape, so that
different design beamwidths can be specified for differéemations, although his model

can only consider these horns approximately. Experimesrigucted by Bauman et al.
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(1993) on one of these horns show an improved stability efadivity control over rectan-

gular horns, which often show a degraded performance indnsgonal plane directivity.

2.3.2 Higher order mode horn modelling

Alfredson (1972) developed a method of analysing a circataustic horn with arbitrary
flare rate. He approximated the shape of the horn by dividimgto a series of small
straight ducts joined by stepped discontinuities. Whenetiod) horns, this “stepped ap-
proximation” allows the inclusion of higher order modeshe talculation, and allows for
a more accurate representation of the physics of horns htflequencies. An iterative
solution technique was used, and the radiation boundamgittons were an extension by
Lansing (1970) of the classic work of Levine and Schwing®4@), on radiation from
an unflanged circular duct from a single mode to many modes.uBk of an unflanged
termination is most unusual in the horn modelling literafuout probably reflects a more
realistic modelling approach than the use of infinite flantgdhinations, at least for
frequencies with wavelength much greater than the charstiteflange width. The sim-
ulations and experiments k= 5.5 andka= 10.9 were reported for directivity, radial
pressure at the horn mouth and axial pressure in the hornthenagreement was very

good.

Oie et al. (1980) modelled a round horn loudspeaker using@pstl approximation and
an infinite baffle. They did not compare their results to expent. Their study shows
that there is a significant difference between the resuttthfoon axis pressure containing
only a single propagating mode, and the multi-modal sohgiooveka~ 3. This is shown

in their directivity plots aka= 3 andka= 4, and is evidence that higher order modes are

important in the modelling of horn loaded loudspeakers gl fiequencieska > 3).

Shindo et al. (1990) use the stepped approximation apprimactduce the size of the

dense matrix produced by Boundary Element Analysis (BEAQutations of rectangular
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horns. They calculated the sound field in the first sectioh@frterior of a horn using the
stepped approximation technique and calculated the rélsesound field using a bound-
ary element technique. The results appear to be quite aecwreen compared to exper-
imental data, and polar plots of both the vertical and hariabsound fields for different
horns show excellent agreement with experiment. The maxirftaquency considered
waska= 3.75, where the dimensiamis the radius of a circular mouth of equivalent area
to the rectangular horn. They suggest that numerical pnableslated to the dynamic
range of representation of floating point numbers (overflowaerflow), can occur with
the stepped approximation technique for some horn geagset8chuhmacher and Ras-
mussen (1999) produced a model of a rectangular horn usengtépped approximation
and refute the claim of Shindo et al. (1990) that a coupled Bigproach is required to

provide a stable numerical model.

For simulations of a high frequency rectangular horn, Satdher and Rasmussen (1999)
found “good agreement” between their model and experinheggalts, provided that the
number of modes included in the simulation was “sufficientheir model uses 4 rec-
tangular acoustic modes of even order (symmetric), as gmtyngetric excitation was
assumed. This assumption is valid, as Muehleisen (199@)texpthat for a symmetric
stepped duct, there is “no coupling between even and odd exgdimodes”. They mod-
elled a number of rectangular horns exiting into an infineéflb and performed Monte-
Carlo (statistically sampled) numerical integration to\pde radiation boundary condi-
tions, because there are no known analytical solutionshigrdase. Their results for
a high frequency horn show excellent agreement with experiad measurement of on
axis far-field pressure tka= 2, with general trends predicted ka~ 8, and poor pre-
dictions to the limits of calculations dfa~ 12, where the dimensioais the radius of
a circular mouth of equivalent area to the rectangular hBan.the high frequency horn,
no comparisons of off axis performance are given. A low feggry horn shows simi-
lar trends, with off axis performance also reported. Insiegthe number of included

modes would show the effect of truncation on the infiniteesefor velocity potential,
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and may improve predictions at high frequencies. The acgwhthe radiation boundary
condition can be tested by using other numerical methodl&isen, 1996) as Monte-
Carlo techniques are traditionally used when accuracy seobndary importance (Press
et al., 1992, Section 7.6). Schuhmacher and Rasmussen)(a8@9suggest future use
of their model in calculating multiple arrays of horns. If taal interaction between the
horn mouths were ignored, this would be a simple extensidingio model. However the
suggestion that their linear model may be extended to irctligtortion would involve
considerable effort given the non-linear nature of the goiwg equations and the vastly

different numerical methods required to solve them.

Kemp et al. (2001) model round horns used in musical instnisa€l'hey are mainly in-
terested in the effects of higher order modes on the inpuédapce of the horn. They use
the discrete section method of Pagneux et al. (1996) andithation boundary condition
of Zorumski (1973) and find excellent agreement with experital measurement of the
input impedance to an estimatkd ~ 3. They show that the inclusion of higher order
modes is necessary for the high flare rate horns used as tgroms of musical instru-
ments such as trumpets and trombones. There is no compuiitboexperimental results

in the far field, although this is not a limitation inherentire method used.

All of the horn models reported in this section are limiteda@ond or rectangular cross
sectional shapes by the requirement of an analytical ge&ori of the cross sectional
modes. The cross sectional shapes of most modern hornsitmermeund nor rectangu-
lar, with the best designs being found by a combination of@gmate simple modelling
and experimental verification (Keele, 1975). Rienstra @0tas developed an approach
that is valid for the more complicated problem of a slowlyyag lined duct of arbitrary
cross section with flow (used in simulations of jet engine$)hich horns of arbitrary
cross section are a subset. He has not presented any resuoitedalling arbitrary cross
sectional shapes requires a numerical approach, and thisignificant disadvantage of

these methods. On the other hand, these methods have pbtefi more efficient than
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alternate techniques such as finite or boundary elementitpas, although no compar-

isons have been made in the horn literature.

2.3.3 Finite Element Analysis

The finite element technique (Kohnke, 2001), or Finite Elet#aalysis (FEA) is a gen-
eral numerical method that can be used to solve a partiardiftial equation with ap-
propriate boundary conditions. It has been used to solvel@mts in a wide variety of
areas such as heat transfer, linear and non-linear solithanexs, and fluid flow. The
Helmholtz harmonic wave equation, that governs the prap@agaf linear sound waves,
can be solved in arbitrary domains by this method. FEA inesldiscretising or “break-
ing up” a domain of interest into smaller “finite” elementadahe underlying differential
equation is approximated over these elements. This leaalsystem of linear equations,
which are solved after the application of boundary condgjdo provide a solution for

the whole domain.

For these techniques to give accurate results for acoustidgms, the elements need to
be a small fraction of an acoustic wavelength in size. As teguency considered in the
analysis increases, the acoustic wavelength decreasetha@orresponding number of
elements required to accurately model a certain size coemgaoncreases approximately
as the cube of frequency, with a corresponding increase nmpatational time. For a
discussion of element size, the “dispersion error’” probkmd an introduction to the
current state of the art in FEA formulations of the HelImhatmiation, see Oberai and
Pinsky (2000). Another problem arises in unbounded domaimsh as at the mouth of
the horn. There is a requirement to truncate the domain ae gmmt, and appropriate
boundary conditions are required (Gerdes, 2000, Dreyevandstorff, 2003). However,
none of the limitations inherent in simple horn models aespnt when calculating horn

solutions using FEA.
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Morita et al. (1980) and Beltran (1998) used linear acoUské to model horns. Both
used axisymmetric analyses, but the Morita et al. analysad & radiation boundary con-
dition calculated using an analytical integral equatiothatmouth of the horn, implicitly
assuming the mouth of the horn is mounted in an infinite balflas approach reduced
the numerical complexity of the problem, and still allowée effects of the variation
in acoustic particle velocity across the mouth of the horlvéamodelled. They report
on and off axis far field acoustic pressures, and both motiels seasonable agreement
with experiment up ti&ka~ 4.6. Importantly, they show that the directivity of a circular
piston differs from the directivity of real horns at highdreencies. This implies that the
circular piston model used in simple horn models is inadegaahigh frequencies, and
alternative models that can take into account variatioasoustic particle velocity across

the horn mouth are needed.

The Beltran (1998) analysis used a commercial code (Kohz@]) with the radiation
boundary condition being non-reflective on a sphericalasa;f requiring the mesh to
extend outside the horn mouth. The model included a repi&tsem of the compression
driver, with the “complicated mechano-acoustic” intetaatof the compression driver
diaphragm with the horn, and indeed this interaction seenbe the major thrust of this
work. The throat pressure is compared to experimental measnts, and “the general
shape and major features of the calculated response is kesgy to the actual response”.
The computational model accurately predicts the locatimh direction of “9 of the 12
peaks” in the measured response, however there is a “deareascuracy above 12 kHz”,
attributed to material property inaccuracies in the diaght material. It is more likely
to be due to inaccuracies in representing the geometry adiighragm, and the coarse
element size compared to the wavelength in this regionhEugfforts by Beltran (1998)
to investigate the coupling between the compression damdrhorn show the utility of
a FEA approach to the design of compression drivers. Th&ghe not concerned with

compression driver design.
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Beltran (1998) does not report far field pressures and bedthsyiprobably because the
FEA model extends only to the near field, and some form of retartfield transforma-
tion would be necessary (Morgans et al., 2000). A compairsiween the horn mouth
model and experimental pressure would have been usefulrifying the accuracy of
an FEA approach to modelling horn flares. No mention is madeeénarticle of the
horn throat dimension used. An approximate scaling fromgilien figure and known
throat dimension (1” diameter) imply a mouth diameter & . At 12 kHz, this implies

ka~ 54, a very high frequency in comparison to other resultsgresl in the literature.

The analyses of Morita et al. (1980) and Beltran (1998) ath Brisymmetric, and there
have been no reports of fully three dimensional horn FEA tbimthe literature. It
has been found (Morgans et al., 2000) that fully three dinograé FEA of large horns
is limited in scope, that “the analysis is constrained bysdize of the problem at high
frequencies” and that the model “cannot simulate to the dsgffrequency required by
the design standards of industry; thus a need exists for cmrgutationally efficient

analysis techniques.” These issues will be addressednaltkbiscope of this thesis.

2.3.4 Boundary element method

The boundary integral equation method, or Boundary Elefdiethod (BEM) (Wu, 2000,
von Estorff, 2000) is a general numerical method for solvimg Helmholtz harmonic
wave equation that governs the linear acoustic field in i@yitdomains. It solves a
surface integral equation that only requires the boundurépase to be discretised into
elements, rather than the whole volume. It also deals intlgliwith radiation boundary

conditions. These are significant advantages over a teg@sigch as FEA.

The traditional approach to boundary element analysis difext method) is based on
numerically approximating the Kirchoff-Helmholtz (K-Hytegral equation (See Section

4.2.3) which is derived from the inhomogeneous Helmholtzagign. The variation of
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pressure on the exterior surface of a volume is discretisdd skhape functions similar
to those used in FEA and a numerical technique called “catlon” is generally used to
solve for the pressure. The method produces dense, non-aslyionfrequency dependent
matrices, which can be badly conditioned if the frequenaylase to an eigenfrequency
of the related interior problem (Copley, 1968). This is edlthe irregular frequency
problem and can be solved by techniques such as CHIEF (Sch£®&8). The direct
BEM approach requires care when applied to thin bodies sagblaes or disks. To
represent a thin body with a finite volume, the distance beitwspposing surfaces must
be small, which can cause numerical problems. This “thirpei@reakdown” is a well
documented (Martinez, 1991) and can produce spurioustseskigure 2.11 shows a
representation of a horn loaded loudspeaker volume wittefthickness walls. If the

finite thickness becomes too small, then “thin shape breaktlwill occur.

Finite Thickness

Figure 2.11: Schematic of a BEM representation of a hornddddudspeaker with a finite thick-
ness.

An alternative approach to direct BEM is the indirect metifddamdi and Ville, 1986,
Vlahopoulos and Raveendra, 1998, Gardner et al., 1996 hadiiscretises the normal
derivative of the K-H integral equation. Instead of solviiog the variation in pressure,
the variation in the jump in pressure across a thin surfas®lged. Theoretically this
eliminates the non-uniqueness problem for closed voluradso¢h the interior and ex-
terior of the volume are solved for simultaneously. In pEchumerical limitations at
the eigenfrequencies of the interior problem require tnestt (Wu, 2000, Chapter 6).
The indirect BEM is usually solved with a variational teadume leading to increased ma-

trix formulation time, but symmetric matrices. Edge coimis and multiple connections
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must be dealt with in special ways making the indirect bom@dement method less

popular than the direct method with CHIEF.

There have been a number of attempts in the literature to hhode loaded loudspeakers
with either direct or indirect BEM. Kristiansen and Johang&989) use a collocation
matrix assembly technique like direct BEM, with a doublediapotential formulation
like indirect BEM, with approximate integration to calctdaghe sound field from horns.
It can be considered a hybrid, lying somewhere between thentethods (see also Wu
1995). They report good agreement with far field resultsedudencies up tka= 13.7
for axisymmetric horns. Calculations are also reporteddotangular horns in Johansen

(1994), although they could easily be extended to includenestangular shapes.

Shindo et al. (1990) use a direct BEM approach, combined antlembedded stepped
approximation (Section 2.3.2) model to reduce the problemm, $0 model rectangular
horns. This analysis appears to be the first in the literdtuemalyse non-axisymmetric
horns. The comparisons between predicted and experinfantild pressure patterns
are excellent, and it appears as though BEM is at least ablesgpaFEA in the modelling
of acoustic horns. No problems with irregular frequenciesraported, which has been
shown to be an issue with the direct BEM method. This may baudmezthe maximum
frequency considered was = 3.75, where the dimensioa is the radius of a circular
mouth of equivalent area to the rectangular horn, and tlegutar frequencies occur at
the eigenvalues of the associated interior problem, rékat¢he volume of the horn. The
maximum frequency may be close to an upper limit, becauséiteeigenmode of a

sphere with equivalent volume would occukat= Tt

Both Henwood (1993) and Geaves and Henwood (1996) use &iEddtto model a short
horn attached to a dome tweeter. Their model is axisymmetrid again their results

for far field pressure show excellent agreement with expemirover all frequency ranges
reported (up tka~ 12.8). They are able to use the direct method because they model

the horn embedded in a spherical volume. Because the destbeteveen the inner surface
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of the horn and the outer surface of the spherical volumerge|goroblems with thin
shape breakdown of direct BEM are avoided. CHIEF (Schen@&8)lis used to avoid

the irregular frequency problem.

Hodgson and Underwood (1997) calculate the throat impetiand on-axis far field pres-
sure of a quarter-symmetric rectangular horn using intliB&M. They report results to
ka~ 9, where the dimensioais the radius of a circular mouth of equivalent area to the
rectangular horn. They do not report any results for ofsdar-field pressure, but show
that indirect BEM is a good potential choice for modellingindoaded loudspeakers.
Other studies have looked at the low frequency response ofrausing indirect BEM

(Miccoli, 1999, Bright et al., 2004).

2.3.5 Other horn models

Other novel horn modelling techniques appear in the liteeatand should be mentioned
here. The Huygens-Fresnel wave model of Backman (1993) dialse®en compared to
experiment, has not been widely adopted, and is not suifablgeneral horn shapes.
Noreland (2002) considers a hybrid model including a lunmpe@meter model where the
flare rate of the horn is small, and an axisymmetric finitéedéhce model for large flare
rates. This model is used in the simulation of musical hoieither of these methods

are suitable for the current study and are not considereduathner.

2.3.6 Summary

There are many choices for modelling horn loaded loudspeaitdrequencies for which
a simple one-parameter approach is not valid. For the cuamlication, which is opti-
misation of the horn geometry, it is imperative that the mdthe as computationally effi-

cient as possible. In the horn modelling literature, no cangon has been made between
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higher order mode models, FEA or BEM in terms of solution use requirements, so
no comment can be made here about their relative efficiertog.r@view also finds little
difference between the accuracies achieved by the bestimgpitation of each method,
and the applicable frequency range. The high frequency bfrthe Beltran (1998) FEA
analysis may be considered an outlier because of uncertditite size of the horn mouth,

and the study was mainly concerned with the compressioemdm@sponse.

The higher order mode modelling technique has disadvastagpen modelling horns
with cross sectional areas that are not circular nor rectangand previous experience
with FEA modelling (Morgans et al., 2000) suggests that stoma of BEM would be ap-
propriate. Direct BEM has problems with modelling the thimfaces found in horns, and
indirect BEM, while able to model thin surfaces, requiresettime for matrix assembly
than direct BEM. The method of Kristiansen and Johansenq1i8& good candidate for
the modelling work undertaken in this thesis, as it combthedetter aspects of each tra-
ditional BEM method. Looking to the general acoustic madglliterature, a promising
numerical technigue called the source superposition tgaer{Koopmann and Fahnline,
1997) has been identified as a potential candidate for moddibrn loaded loudspeakers.
This technique, like that of Kristiansen and Johansen (LB88ble to model thin struc-
tures like indirect BEM and uses a collocation like assentiéthnique similar to direct
BEM. It has been validated extensively for the calculatibacaoustic power radiated from
structures, and one method it uses to calculate power igdgrizte the far-field intensity
over a spherical surface covering the structure. It is Hypsised that this method will
calculate accurate values of far field pressure more effigi¢hat standard BEM, and
it is investigated as a potential candidate for developasg humerical models of horn

loaded loudspeakers in this thesis.
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2.4 Horn optimisation

The ability to compute the required shape of a horn, givenezifpd beamwidth and
frequency response, is greatly desired by horn designefssatihe overall aim of the

current work.

The earliest reference to optimisation of horn beamwidih&fredson (1972), who sug-
gests that his method of modelling acoustic horns could benebed to “predict the rate
of flare required to produce (if possible) particular raidiadirectivity pattern”. A review

of the literature referencing this paper has not found amkwa this technique applied to
the optimisation of horn geometries. Because the higherambde modelling technique
used by Alfredson has disadvantages when modelling hortis ambss sectional areas

that are not circular nor rectangular, this method will nefilarther considered.

It is interesting to note the “if possible” caveat that Atiemn places on his statement,
and Morse (1976) touches on this subject saying that “thédiof possible variation
of the beam distribution are stringent” when a desired tamhgpattern is produced by
controlling the modal velocity distribution of various rating cylindrical modes, and
that it may not be possible to generate certain radiatiotepet. One restriction Morse
mentions is that the main lobe or the radiation pattern “carenbe made narrower”, but
can be made wider by “juggling the velocity distribution bétpiston”. One question that
should be answered by this thesis is “what is physically iptesswhen it comes to the

design of optimal horns.

2.4.1 Objective functions

Shape optimisation routine for horn loaded loudspeakersires the definition of a set
of parameters that control the geometry of the horn. The gtgnis then used as an
input to a numerical model of the horn, with the beamwidth raguency response cal-

culated outputs. An objective function then uses the ostpuat returns a measure of
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the effectiveness of these input parameters in achieviagléisired goals. The iterative
optimisation procedure, such as Sequential Quadratic&@mming (SQP, see B.2), then

drives the inputs to achieve the desired goals.

An ideal objective function for use in designing acousticrtsovould measure many pa-
rameters; the smoothness of the frequency response; fieeedife between target and
actual beamwidth; the smoothness of the beamwidth; andighpsse amount of gain
required over a certain bandwidth. In the optimisation obenHoaded woofer by Mic-
coli (1999), the single objective cost function incorpedhta 90 beamwidth as a 6dB
difference in sound pressure level between an on-axis maasmt and a 450ff axis
measurement. No measure of smoothness of frequency resp@assmentioned in this

work.

Bangtsson et al. (2003), when optimising a planar (2D) haingiFEA, were not con-
cerned with the sound field outside the horn. They requirati ttre shape of the horn
minimise reflections and thus match the impedance of the Wwiathe surrounding air.
The objective function used was equal to the sum of the sopfatiee reflection coef-
ficient at each frequency considered (their objective fioncalso contains a term that
can be considered to be part of the optimisation techniged,ust the fundamental aim
of the minimisation). A horn with no reflections would have “&teal” one parameter

response, and would hopefully have a smooth frequency nsgpo

To ensure a smooth frequency response, Henwood (1993) lisedeighted average of
the squared difference between the pressure at a singleefiey and the pressure av-
eraged over all frequencies of interest as a single obgcist function. Geaves and
Henwood (1996) used a more complicated cost function thatdsgonentially increas-

ing penalties” for designs that do not meet the requiredgehesiiteria. They measured
both the flatness of the frequency response and the gairaseeen by adding a short
horn to a dome tweeter, and suggest that further work will deéd beamwidth require-

ments. Their cost function involves multiple unrelatedemtives but combines them in
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an arbitrarily weighted single cost function, albeit onattis exactly zero if all objectives
are met. There may be difficulty in selecting weights if otheteria are added. Deb
(2001) describes the problems with this weighted averageoapgh and suggests that a
true multi-objective approach be used, where the cost fmges a vector rather than
a scalar, and (for 2 objectives) there is “line” of optimalwsmns, rather than one sin-
gle optimum. Ideally a true multi-objective approach wobédused for a multi-objective
problem, but the solution techniques require an enormonmeuof function evaluations,

and this approach may not be feasible.

2.4.2 Optimisation methods

The optimisation technique used by Miccoli (1999) to mirsmthe cost function was a
non-linear programming approach, and used a commerciahigattion package. Geaves
and Henwood (1996) used a method called the Weighted RandarotsMethod (WRSM),
where after starting with an initial state, “random changesmade to the design in such
a way that the probability of making a small change is grethten that of making a large
change”, and the objective function is calculated. The nawt®n is kept if it is superior
to the old solution, otherwise the old solution surviveg] #me method is iterated until
convergence or the maximum number of iterations is reacfiéey use this method in
preference to traditional deterministic methods basechercalculation of the gradient
of the cost function because they found a large number of lng@ma in a sample cal-
culation of their cost function. The traditional methods aot very robust with these
types of problems, as they tend to get “stuck” on these logaima. They also suggest
that robust optimisation techniques such as Genetic Algos (Goldberg, 1989, Deb,
2001) and Simulated Annealing (Ingber, 1993, p444) woulduitable for this kind of

optimisation.

Both Henwood (1993) and Geaves and Henwood (1996) use gmaxistric BEM model

of a horn loaded tweeter, and the computational requiresrfenthis approach are small
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compared to a fully three dimensional model. It was found owird et al. (2004) that
optimisation techniques such as Genetic Algorithms (aedymably the WRSM) require
a large number of cost function evaluations, and efficiemernical methods are required

to make the technique feasible.

Bangtsson et al. (2003) used FEA to model their 2D planar,leord there may be issues
extending this technique to 3D (Morgans et al., 2000). Theyhbwever, use a novel
approach to finding the optimum shape of the horn to minimeflections. They use an
adjoint technique to find the gradient (Jameson, 1995, 2068]) in a quasi-Newton min-
imisation algorithm. The adjoint technique finds the gratlaf any number of parameters
at the same cost as solving the original model. In contrafstveard difference approx-
imation to the gradient would require as many additiona¥eslas there are variables,
and may not be robust (See B.2). The parameters in Bangtssbnage the position of
each finite element mesh point defining the shape of the hathsame form of mesh

smoothing or filtering is required to eliminate local minieuad “wiggly” solutions.

The use of the adjoint method is attractive when a large nuwibgarameters is used in
the optimisation. The method has been applied to efficieptementations of FEA (Fei-
jéo et al., 2001) for the solution of inverse scattering peats, and to BEM (Ghayour and
Baysal, 2000) for the minimisation of sound transmissioar@barrier. This interesting
approach has not been applied to the source superpositithiodieefore, and will not be

considered further in this thesis.

2.5 Summary and gaps in the current knowledge

The aim of the current work is to develop a design method toutatle the required shape
of a horn to give both a flat frequency response and the dds&@ahwidth over a specified

frequency range.
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In an extensive review of the literature, it was found thatstracoustic horn models
are based on a simple, one parameter (Webster), model ofl gzapagation within the
horn and do not accurately model far field acoustic pressitfggr on or off axis. They
generally tend to model acoustic impedance to a reasonalflee of accuracy, provided
there are no sharp changes in the horn cross sectional ateare & evidence in the
literature (Holland et al., 1991, Di Cola et al., 2000, 20@iat variations in pressure
and acoustic particle velocity across the width of the hdigher order modes) can be
significant at some frequencies, and measurement of theldwmid at the mouth of the
horn would confirm this. These measurements, along with teaserement of the far
field pressure, would allow an examination of the validitynoimerical models of horn
loaded loudspeakers. Thus, the need exists for experintemteneasure both the near

and far field of horn loaded loudspeakers.

Alternative approaches to the simple horn models, suchgsehiorder mode models,
Finite Element Analysis (FEA) or the Boundary Element M&t(BEM) have been found

in the literature. However, while these methods can eliteipaoblems associated with
the approximate equation of Webster, it has been found thaehorder mode models are
limited in cross sectional geometry, and that 3D FEA is ictteble for large horn models
and high frequencies, and unsuitable for application tontpation techniques (Morgans
etal., 2000). There is also evidence that 3D BEM is similariguitable at the mid to high
frequencies needed for cinema applications (von Estddfl02. As such, there exists a
need to develop models of acoustic horns that can includeffeets of higher order

modes. The source superposition technique (Koopmann amdif@, 1997) has been
identified as a potential candidate for efficient modellifighorn loaded loudspeakers,
but no evidence has been found in the literature of this tigcienapplied to modelling

far-field acoustic pressure. To evaluate this techniquectifely, a rigorous comparison

to both known analytical solutions and other numerical rod¢hs required.

The ability to compute the shape of a horn, given a specifienipedth and frequency
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response, is greatly desired by horn designers. The optilmmsof horn loaded loud-
speakers to produce a desired outcome has been attempiexiple Examples include
an optimisation of the beamwidth of a horn loaded woofer gisiBD BEM (Miccoli,
1999), the optimisation of the frequency response of a lmaddd tweeter using axisym-
metric BEM (Henwood, 1993, Geaves and Henwood, 1996), ar&t nrcently FEA to
optimise the frequency response of a planar horn (Bangtsisaln, 2003). None of these
methods have been applied to optimising both beamwidth@odiéncy response for the
type of horns used in cinema loudspeaker systems. Thus #ieexésts for the develop-
ment of fast and robust optimisation techniques that wibdoice a horn geometry with
a specified frequency independent beamwidth and a smoajheney response over as

large a bandwidth as possible.
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Chapter 3

The sound field at the horn mouth

The nature of the sound field at the mouth of two small axisytnimeorns is investigated
experimentally. An automated traverse system was used &sune the pressure across
the mouth of each horn, and the results were decomposedmbtades and phases of

cylindrical modes, solutions to the Helmholtz equationyhrdrical coordinates.

The circumferential variation of the sound field was examjrend existence of plane

waves above a certain limiting frequency was tested.

3.1 Introduction

Typically acoustic horns are modelled using the assumpghanthe radiation from the
mouth can be adequately described by radiation from a pistan infinite baffle. Many
simple numerical models of horns assume that the mouth ohdhe is placed in an
infinite baffle', however most commercially produced horns are not usedstedén this
configuration. The baffled piston assumption, which is egjent to assuming only plane

waves exist at the mouth of the horn, appears to give reaonedults for the acoustic

LA common alternative to a piston in an infinite baffle is to assuhat the horn mouth is a spherical
cap mounted on the surface of a sphere (Geddes, 1987, Heltahg 1991).
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impedance at low frequencies (McLean et al., 1992). Thaalkssexperimental evidence,
such as nulls in the on-axis frequency response of the hdrarf@ess, 1994) and a non-
uniform pressure profile across the mouth of the horn (Hdlktral., 1991, Di Cola et al.,

2000, 2001), suggesting that at higher frequencies therprsidiator assumption may be
inaccurate, and alternate approaches such as the conisiderhigher order modes are

needed.

In the work described in this thesis the sound field in the mmaditsmall axisymmetric
horns is experimentally measured, for both exponentialtaadstep conical horns, with
an unbaffled exit plane condition. The assumption that otdyg waves exist at the
mouth of the horn is tested by a modal decomposition. Thisrapson has implications

regarding the choice of numerical method needed to moddidhes.

First, the experimental equipment used to measure the daldds described in detail.
Then the experiments are described and the pressure fiellisrés a number of fre-
quencies presented, giving an indication of the complexithe sound field. The theory
of cylindrical modes is presented, and a modal decompaosidfahe measured results
calculated. Finally, conclusions as to the nature of thenddield and requirements for

numerical methods are presented.

3.2 Experimental equipment

The sound field at the exit plane of the horn was measured fanbaffled condition in

a semi anechoic facility. Transfer functions between thmiirio the horn compression
driver and the pressure (the sensitivity) at the horn exahelwere measured at a series
of points that map the horn mouth. TheLksA measurement system (Rife, 2001) and an
automated two axis traverse were used. The experimengagement is shown in Figure

3.1.
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Homn Mlcropr‘lone Anechoic

Termination
MLSSA ) /
_

[] o

\Trave rse

Figure 3.1: Experimental arrangement showing MLSSA meawsant system driving (through an

amplifier) the horn loaded loudspeaker under test. The presd the horn mouth is measured by
the microphone, which is positioned by the traverse. Rédlestfrom the walls are reduced by an
anechoic termination on the walls.

3.2.1 Experimental facility

The experiments were undertaken using a semi-anechoiityfaas shown in Figure 3.2.
In this room, the surfaces on one end have been covered witheseof sound absorbent
material, and the other half is a measurement and testiogdadry. The sound absorbent
wedges are not totally anechoic, especially at low fregesndut the absorption in the
frequency range of interest is large, and the ability af9dA to gate the impulse re-
sponse of measurements before reflections return (Rife andérkooy, 1989) mean that

accurate measurements in the near field of acoustic hornsecarade.

3.2.2 Acoustic horns

Two simple axisymmetric horns have been manufactured davadkperimental validation
of any models developed. These horns, shown in Figure 3tB,Hawve a 2 inch (50 mm)
diameter throat; an 11 inch (280 mm) diameter mouth with ach i(25 mm) flange;
and they are 25 inches (235 mm) in length. One horn has an exponentighti@mni in

area between the throat and the mouth, and the other is a épashical horn. These
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Figure 3.2: Semi-anechoic facility showing wedges of atiowbsorptive material.

sample horns have been designed to operate from above 4@0292000 Hz (the upper
limit of human hearing), enabling validation of the modetseloped in this project to be
examined over a wide frequency range, although the perfoecenat high frequencies will

be compromised due to bandwidth limitations of the driver.
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(a) Exponential horn

(b) Two step conical horn

Figure 3.3: Axisymmetric horns used in experimental mezsents.
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3.2.3 Traverse system

An automated traverse system, developed by the School ohi&vhécal Engineering, was
used to move the sensor automatically across the face obtherha repeatable controlled
manner. The traverse allows three axis positioning vigeemotor control, although the

current setup uses only two axes. Figure 3.4 shows the s@aused in these experiments.

Figure 3.4: Automated traverse used to position the miaophluring experiments.
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Low level step control is provided by a custom controller pakich is connected to a
computer via a parallel port. A C language library (Morge2@04) has been written to
control the traverse as well as programs to interactivelyarbe sensor, and to automate

the measurement by external calls from theddA measurement system.

The positions that the traverse moves to during a measutemerare determined by
the centroids of a triangular finite element mesh, genelagdte finite element program
ANsSYs (Kohnke, 2001). The use of a finite element mesh generalisesige of the
traverse to almost any shape, and allows an even spacing&etweasurements. Figure
3.5 shows the mesh used to capture the sound field over thenmabthie horn. It also
shows a close up of the mesh, with the red dots showing theocierdf the elements,
indicating the coordinates over which the microphone istmosed. For the mesh used
in these experiments, 3434 positions were used. This shallda resolution up to a
frequency of 12 kHz (Based on a mean element spacingd@®7 m and 6 elements per

wavelength), provided the microphone used is small enough.
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3.2.4 Measurement system

The Maximum Length Sequence (MLS) technique measures thals® response of a
system in the time domain, rather than applying an inversefFaurier Transform (FFT)
to the measured transfer function. By directly measurirggithpulse response, any re-
quired FFT can be performed as a post processing operagiducing computation com-
plexity. This advantage may have been significant in 1988 (&nd Vanderkooy, 1989)
with the speed of personal computers available at that tangs not as relevant now. The
MLSSA measurement system does however have other advantageiding noise im-
munity, high signal-to-noise ratios, and the ability tatcate the impulse response before

reflections return (for example from the rear wall of the samechoic facility).

The MLSSA measurement system (Rife, 2001), a commerciadlitable signal process-
ing card and software, was used to measure the acoustiapge3he software provides
a reasonably complete measurement and analysis systenasiadhiiacro processing fa-

cility with the ability to run external programs between@ugated measurements.

The signal from the MLSSA card was amplified by a BJR 100W afmepland connected

to a Beyma model CP800/Ti compression driver (Beyma, 1999).

3.2.5 Pressure sensor

Pressure measurements were taken usingda Bruel & Kjaer microphone Type 4138
connected to a Briel & Kjeer Nexus preamplifier. Measurememet® made to confirm
that the output level used was well above the noise floor. rEi§u6 shows the on-axis
sensitivity, the Sound Pressure Level (SPL) produced byltlofonput, measured using
MLSSA at the mouth of the horn. Four different stimulus levels wapglied with an

almost 20 dB difference between the highest and lowestdev@hly minor differences
between the measured sensitivities are seen, confirmingatise rejection capability of

the MLSsSA system and its utility in measuring audio equipment.

Horn Loaded Loudspeakers. Richard C. Morgans.
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Figure 3.6: On-axis sensitivity measured in the plane offtbm mouth for varying stimulus
levels.

3.2.6 Experimental method

The particular horn under test was placed on a suitable $aimd) into the semi-anechoic
room. The traverse was secured in front of the horn, aftéalsie alignment. The program
i nteract (Morgans, 2004) contains an option to find the centre of dbg interactively

moving to three points on the circumference of the circleisTption was used to find

the centre of the horn, and a suitable offset saved and wiittdisk.

The microphone was attached to the preamplifier and MLSSAsureaent system and
calibrated using a Briel & Kjeer Type 4231 acoustical catifimaThe macro option in
MLSSA was used to automate the measurements. After eachureeaant was made and
written to disk, the programovet r av (Morgans, 2004) was called to move the traverse
to the next position. To avoid backlash in the system, angi¢@d up the measurements,
an algorithm was developed that only allowed the steppeoradt drive forward. When
the motor needs to move backward to go to the next positiesystem zeros itself and

then drives forward again.

The University of Adelaide. Department of Mechanical Emrggring.



3.3. Results 59

3.3 Results

The results were processed using\iAB at 50 frequencies varying linearly between

100 and 15000 Hz. At a subset of these frequencies,

f = {410 710, 132Q 284Q 436Q 7400 1044Q 12260 Hz (3.1)

results were plotted for both magnitude and phase, rel&divke on-axis result. These
appear in full in Appendix A. Some results are given belowtfoe acoustic pressure
magnitude response only for the exponential and two stegalimorns at low (710 Hz,

Figure 3.7), medium (4360 Hz, Figure 3.8) and high (10440migure 3.9) frequencies.

Horn Loaded Loudspeakers. Richard C. Morgans.
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These results show a strong degree of similarity betweetwbéorn types at low fre-
quencies, and the sound field produced by these horns inttfielthshould be similar.
This can be seen by reference to Figure 3.10, a plot of the Watim(Section 2.1.2) of
the two horns. At low frequencies the beamwidth producecdhbytwo horns is identical.
At the mid frequencies, the pressure field at the mouth of Xipereential horn is some-
what uneven. It is, however, quite different to the presdiedd of the two step conical
horn, which has a high pressure region at the centre. Thewieltinof each horn at these
mid frequencies is dramatically different. At high frequess both horns have a high
pressure region at the centre, and appear to have radiabwiaveloping over the horn

Cross section.

This is experimental evidence that the sound field at the maiutorns of the type used in
cinema loudspeaker applications is quite complicated @laasertain limiting frequency.
Figure 3.10 shows a divergence in the beamwidth at apprd&ign2400 Hz. Examining
the sound field below (2230 Hz, Figure 3.11) and above (2840Riure 3.12) this
frequency shows some differences. Below 2400 Hz, both sdiefds appear similar.
Above this frequency the exponential horn appears to geeraound field which is
broadly similar to the low frequency one, however the twg stenical horn generates
a very different field, with 5 “lobes” of intensity equal toetltentre, appearing radially
around the horn. The exponential horn shows some evidenttesdflobing”; however

the intensity is not as great.

Horn Loaded Loudspeakers. Richard C. Morgans.
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3.4 Theory

The above analysis of the results is entirely qualitativequantitative analysis can be
carried out by decomposing the sound field at the mouth of tre mto a series of
orthogonal modes, such as those used in duct acousticsiésee PL994) Chapter 7). In
this case, the modes chosen are cylindrical duct modes shthe diameter as the mouth

of the horn (280 mm).

The acoustic pressurgr, 0) at radiusr, angled in the mouth of the horn, can be written

in terms of the fundamental solutions to the Helmholtz eigmafT his gives,

®» 2 cosmd
p(r.8) = Z AmnIm (Omn) (3.2)
m=0n= sinmd

where Jy, is a Bessel function of the first kinddm, is the modal amplitude of radial
modem and circumferential mode, amnn, = Nmn/@, wherea is the radius of the duct and
Nmn is then'™ zero of the derivative oy, for a hard walled duct. The termy, is the
wavenumber related to the cut-on frequency for propagatiomode(m, n) in a duct. For

each radial moden > 0, two degenerate modes exist, a cosine mode and a sine mode.

Equation 3.2 can be rewritten by replacing the double sunomatith a single index run-
ning from 1 toM, the number of retained modes. The modes can be sorted byiwave
ber, giving,

M
Pi=> A (3.3)
=1

Wherep; is the acoustic pressure at position is the mode summation index (related to

bothn andm), A; is the modal amplitude for modeand

cosmb;
sinmb;

@j = Im (Atmnli)

Horn Loaded Loudspeakers. Richard C. Morgans.
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is the mode shape for the single indexrhe equation can be written in vector form,

pi = PIA (3.4)

where®; is a row vector of mode shapes at positiandA is a column vector of modal

amplitudes.

For N points in space, the matrix relationship

P=0A (3.5)

can be written, wher® is a column vector of pressures at tRepoints,A is a column
vector containing theM retained modal amplitudes arfl is the N x M modal shape

matrix.

The individual mode shapes can be plotted for each positicspace. These are the
columns of®. The first(0,0), or plane wave, mode has no spatial variation, as shown in

Figure 3.13. This mode will propagate in a duct at all frequies
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Figure 3.13: Modé0,0), cut-on a0 Hz.

The second pair of degenerate modeg)), shown in Figure 3.14 have a single radial

The University of Adelaide. Department of Mechanical Emrggring.
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node (a single variation around the circumference) andncariferential nodes (no radial

variation), and will propagate in a duct above the cut-ogdency of 710 Hz.

The third pair of degenerate modez 0), shown in Figure 3.15, have two radial nodes
(two complete loops around the circumference) no circuemféal nodes (no radial vari-

ation). These modes will propagate in a duct above 1180 Hz.

The final example of a mode shape is shown in Figure 3.16. Fhikd(0,1) mode,
with no radial nodes (circumferential variation) and a &ngrcumferential node (radial

variation). It will propagate in a duct at frequencies ab®480 Hz.

The vectorP in Equation 3.5 is the measured pressure at each point orritheagd the
mode shap@ is known. Using a pseudo inverse AVLAB functionpi nv) it is possible

to find the modal amplitudes at each frequency using,

A=pinv(P)P (3.6)

This will give the modal amplitude of each mode at each fregye This quantity is
complex valued, and a more appropriate measure of modeaygtrenthe absolute modal

amplitude squarefh?|.

Horn Loaded Loudspeakers. Richard C. Morgans.
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3.5 Analysis

The modal decomposition described in the previous sectes performed. The results

for the absolute modal amplitude squarb&

, normalised by the maximum value [¢|
at each frequency, are plotted as an image (in dB) in Figure f8r both the exponential
and two step conical horns. The abscissa is frequency anardngate is mode number

ordered from top to bottom by increasing cut-on frequency.

Re-ordering the mode index to have increasing circumfexiefm), then radial n) order

gives the results shown in Figure 3.18 for both the expoakatid two step conical horns.

What is immediately evident from both these sets of graptisitsthe energy at the mouth
of the horn is contained almost exclusively in a small nundfenodes, as indicate by
the bands of colour in the figures. If the absolute modal aombdi squared is summed
over each radial mode (i.e. starting with= 0, for all n), then the fraction of energy in
each radial mode can be calculated. For the two step coracald®7% of total acoustic
power is retained in then= 0 modes. Similarly for the exponential horn.6% of the
total acoustic energy is retained in the= 0 modes. There is almost no energy in the
higher radial modes. This means that even though the peegssaps may look like they
have a strong circumferential variation, for example FegBrl2 (b), the contribution of

this variation to the total field is small.

Considering only then = 0 modes, Figure 3.19 shows the variation of the first 16 radial
mode strengths with frequency. It can be clearly seen thateah certain limiting fre-
quency, the plane wave mode does not contribute to the soelddati the horn mouth.
This phenomenon does not appear to be limited to the two stejgal horn, although
the frequency of transition is slightly lower for the two [gteonical horn than for the

exponential horn.

Horn Loaded Loudspeakers. Richard C. Morgans.
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Figure 3.17: Absolute modal amplitude squaHﬂk?,L for mode index ordered by increasing cut-
on frequency,.
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Figure 3.18: Absolute modal amplitude squaﬂpk?,|, ordered by increasing circumferentiah)(
then radial ) order.
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3.6 Conclusions

Experiments to measure the sound field at the mouth of twol sioiads have been under-
taken to examine the validity of the plane wave radiatiouaggion made by a number
of horn models. The horns are representative of the size esigrdrequired for cinema
loudspeaker systems, but are axisymmetric. The experahsggults demonstrate that

this geometric simplicity does not mean that a simple soueid &xists at the mouth.

The sound field was measured by an automated microphonedeavAlmost 3500 in-
dividual measurements were made across the face of eachgnounding a high spatial
resolution. The results were presented as magnitude dletaiod pressure level relative
to the on-axis sound pressure level. At low frequenciesstiuad field from both the two
step conical and exponential horns were similar, as exgeétieove a certain frequency,

the sound fields became more complex.

An analysis of the data using a modal decomposition witmdylcal duct modes of the
same diameter as the exit plane of the horn revealed thatsakmf the energy in the
system existed it = 0 modes, i.e. modes with no circumferential variation, amat t
indeed, above a certain limiting frequency, plane waveseax#o exist at the mouth of

each horn.

This work sets the stage for the numerical models in futu@tdrs. Any numerical
model must be capable of efficiently modelling variationgha sound field across the
mouth of the horn. Models based on plane wave approximasibasld not be used for

modelling these experimental horns, at least above a nemtiical frequency.

Horn Loaded Loudspeakers. Richard C. Morgans.






Chapter 4

Fast boundary element methods

Numerical models able to accurately and quickly calculagefar field pressure from ar-
bitrary shapes are investigated. This chapter comparekgedtained from the analytical
solution of a vibrating cap mounted on the surface of a sphéhethe results obtained us-
ing two alternative boundary element based numerical nasththe accuracy and speed
of the far field pressure solution for both methods is exandhiné has been found that
a number of techniques can be used to speed up solution tithewvicompromising

accuracy.

4.1 Introduction

The experiments performed in Chapter 3 show that for smalyaxmetric horn loaded
loudspeakers, above a certain limiting frequency, a soweld fwith a complex radial
variation in amplitude exists at the mouth of the horn. Sertpkeoretical models of horn
loaded loudspeakers such as those of Holland et al. (199d)edh et al. (1992) and
Mapes-Riordan (1993) assume a smooth radial variationundgdield amplitude across
the mouth of the horn, and cannot model the beamwidth of thesastic horns in the

frequency range of interest. Hence, there is a need for rioahenethods capable of
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modelling complex variations in sound field inside the hamg more importantly, accu-
rately modelling the acoustic pressure field away from thetmof the horn, as required

for estimation of the beamwidth (Section 2.1.2).

Traditional approaches to predicting radiation from dtes have been limited to either
analytical solutions of the governing equations, or to rogthow frequency approxima-

tions to these equations (Junger and Feit, 1993, Morse galdn1986). The analytical

solutions are limited to structures with surfaces that confto constant coordinate values
in a small number of separable co-ordinate systems (Momd&ashbach, 1953), such as
cylinders or spheres. As most horns are not of this formnd the frequencies of interest
generally lie between the low and high frequency approxonat alternative approaches

must be sought.

Numerical methods such as Finite Element Analysis (FEA)t(8e, 1998) or the Bound-
ary Element Method (BEM) (Hodgson and Underwood, 1997) lmmen used to predict
sound fields from horn loaded loudspeakers. However, whied methods can elim-
inate problems associated with analytical techniquesastiteen found that fully three-
dimensional (3D) FEA can become intractable for large n®detl high frequencies, and
unsuitable for application to optimisation techniques (yéms et al., 2000). There is also
evidence that fully 3D direct BEM is similarly unsuitabler ine mid to high frequencies
(von Estorff, 2000). A promising numerical technique, edlkhe source superposition
technique (Koopmann and Fahnline, 1997), was identifiedmssaible candidate to de-
velop fast numerical models of horn loaded loudspeakersevatuate this technique
effectively, a rigorous comparison to both known analytstdutions and other numerical
methods was necessary. Both the accuracy of modelling #sspre in the far field and
the speed of solution had to be investigated, as these ncatheréthods are applied to the
optimisation of the horn geometry described in later chaptilo previous studies have

been found that examine the trade-off between accuracylofi@o in the far-field and

1The "acoustic waveguide” approach of Geddes (2002) (setoBex:3.1) uses this approach to design
“Oblate Spheroid” horns.
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speed of solution.

This chapter investigates the application of a fully 3D diffEM (Wu, 2000), as well as
the source superposition technique of Koopmann and Fah(iB07), to the modelling of
a vibrating cap mounted on the surface of a sphere. This gepened loading condition

were chosen because analytical solutions are readilyadlajland it is a good first step

to developing fast and accurate models of horn loaded |eaksys.

First, the theoretical backgrounds to the analytical sotuand both the direct BEM and
the source superposition method are given. The exact &alggsults are compared with
the results obtained using the numerical methods, and dysanaf the speed of solution
is made. The accuracy of the far field pressure solution fdn beethods is examined
when the mesh density is reduced to below 6 elements peraraythl. Further techniques
to increase the speed of solution of the source superposéchnique using fast matrix
solvers, rotational symmetry and frequency interpolatom examined. Finally, a full

model utilising all of the speedup techniques describedhim ¢hapter is developed and
conclusions are drawn as to the utility of the source susstipa technique for numerical

modelling of horn loaded loudspeakers.

4.2 Theory

This section gives an introduction to the theory used inttinesis. Linear acoustic sound
propagation from an arbitrarily shaped surface, such asralbaded loudspeaker, can be
described by the wave equation. First, this equation isrdesttand boundary conditions
for a solid surface and infinite boundary given. The Helmheljuation is then derived
from the wave equation. This equation is the basis of all thedydical and numerical
methods used in this thesis. The analytical solution of tekrtHoltz equation in spheri-
cal coordinates is then used to derive an equation for thigetdrpressure from a velocity

distribution over the surface of a sphere, a simple modelboh madiation (Figure 2.5).
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This analytical solution is used to verify the numerical huets used in this chapter. The
Kirchoff-Helmholtz integral equation, which can be dedveom the Helmholtz equation,
is then described. This equation is useful because it abbodescription of any sound field
in terms of simple fundamental solutions to the wave equatimonopoles and dipoles.
The Kirchoff-Helmholtz equation is the theoretical basisthe traditional Boundary EI-
ement Method (BEM). The theory of BEM is described, and findie theoretical basis
of the source superposition method of Koopmann and Fah(il®®@7) is described, along

with potential advantages of this method when used to mantel lnaded loudspeakers.

The wave equation (Morse and Ingard, 1986, Pierce, 1994yites the time dependent

propagation of acoustic waves in a fluid

1 0%p(x,t
sz(x,t)—?%:o (4.1)
d d 0

wherep is the time dependent pressurg,= { } in Cartesian coordinates,is

%’ 3y’ 0z
the speed of sound in the mediur= {x,y, z} is the position vector antdis time. The
linear acoustic momentum equation describes the reldtipigetween pressure gradient

and velocity

=—0p (4.2)
wherev = {vy, vy, V;} is the velocity vector angy is the fluid density.

These equations have been derived by assuming the acoastbles are in fact small
perturbations around a mean value in the linearised equatibconservation of mass and
momentum, and are related with an equation of state. Thigadien has been performed
many times (Morse and Ingard, 1986, Pierce, 1994, Koopmadriahnline, 1997) and

will not be repeated here.

If the acoustic variables vary harmonically with time, if@r pressurep(x,t) = p(x) e/

wherej = +/—1,w= 21tf is the circular frequency, is the frequency andis the complex
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pressure amplitude, then Equation 4.1 becomes the homogehRkeimholtz equation

2p(x) +k?p(x) =0 (4.3)

wherek = w/cis the wavenumber. Boundary conditions for a solid surfa@®ntact with
the fluid can be found using Equation 4.2, and relate the nlorebacity on the surface of

interest to the normal pressure gradient,

V(x)-n= —.in)(x)ﬂ (4.4)

wheren is the normal vector. If the surfaces of interest are assuimdx surrounded
by a fluid extending to infinity, which is a valid assumptionaify other surfaces are
a large distance away, a boundary condition called the Sofaldeadiation condition
(Sommerfeld, 1949, Page 189) is required
lim
r(B(X) — pocvr (x)) =0 (4.5)
I — oo
wherer a radial coordinate centred on the vibrating surfaces anslthe radial velocity.
Equation 4.5 uses conservation of energy to describe hoarttpditudes of propagating
waves decrease as the surface area of the waves get larpeydsavel further from the
source. Once a wave is far enough away from the source, thesvegopear planar and are

related through their characteristic impedanze,

4.2.1 Sound radiation from a sphere

As described in Section 2.1.2, the far field pressure digiob of a spherical cap mounted
on the surface of a sphere can be regarded as a simplifieccphysdel of a horn loaded
loudspeaker. In this section the pressure distributiodpeed by a velocity distribution

over the surface of a sphere is derived by considering thenhigkz equation in spherical
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coordinates. The analytical equation thus derived for tlesgure field generated by a
vibrating spherical cap is used in this thesis to as a simyden@le to validate the nu-
merical methods considered. The theory developed in teisoseis also used in Chapter
6 to investigate the generation of a frequency independesutnividth with an arbitrary

velocity distribution over the surface of a sphere.

Equation 4.3 is separable in spherical coordinates. Thuisdooate system is described in

Figure 4.1. Ignoring variations in thgdirection, i.e. assuming axisymmetry, gives,

10 (20000, 1 0 (. 00O oo o
2 or <r o ) Trzsingae \SM0 g ) THPROI=0 (46)

wherer and@ are the radial and angular coordinates respectively.

zZ
A

Figure 4.1: Co-ordinate system defining a vibrating splaésarface.

By assuming that the solution to the Equation 4.6 can be aggghmto components that

vary in only a single coordinate system,

p(r,0) =R(r)©(0) 4.7)
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the Helmholtz equation (Equation 4.6) becomes

(%50 5) ] o ) -0

with two terms in square brackets each involving a singleade only. For this equation

to hold, each term must be a constant, equal and oppositéndgSetis constant t&€ we

find,
0°R(r) . 9R(r)
2 2.2
5 +2r o T (kr*=C)R(r)=0 (4.9)
1 0 (. 300 B

It can be shown (Morse and Ingard, 1986) tBat n(n+ 1) if Equation 4.10 is to have
finite solutions for all values 0®. This equation has a solution that can be written in
terms ofP, (x), the Legendre Polynomials. These functions form an orthabset, and

represent waves travelling around the sphere. They arertimtreormal, and

/1 Ph(X) Pm(X)dx = /nPn(cose)Pm(cose)sinGde
1 0

= 0 n#m (4.11)

2 _
2n+1 n=m

The radial equation (Equation 4.9) has solutions for outgevaves that satisfy the Som-
merfeld radiation condition (Equation 4.5). These aremgivgspherical Hankel functions

of the second kind of order,

h? (1) = /5 (T (0= iNp 3 (1) (4.12)

2

whereJ, andN, are the Bessel functions of the first and second kind of onddrhese

Horn Loaded Loudspeakers. Richard C. Morgans.



86 Chapter 4. Fast boundary element methods

functions represent outgoing radial waves. /et 0, the function is,

e
e (== (4.13)
The pressure can be written as,
p(r,0) = Z)ArPn (cos9) hi?) (kr) (4.14)
n=

whereA, are unknown coefficients. The relation between velocity eatial pressure
gradient can be found by the linearised momentum equattemqsation 4.4) in spherical

coordinates,
dp(r,0)
dr

= —jwpb; (1,0) (4.15)

where v (r,0,t) = ¥, (r,8) e/ is the radial velocity. The radial derivative of the pressur

(Equation 4.14) can be evaluated, giving the velocity

A

0 (1,0) = — i)A,Pn(cose) "2 (kr) (4.16)

—Jpc

wherehi? (r) is the derivative of the spherical Hankel function of thes®tkind with

respect to the radial co-ordinateThis can be calculated easily (Morse and Ingard, 1986,

Equation 7.2.13)

(0= 5 (W22 )~ (n+ Ry () (4.17)

An arbitrary velocity profile,U (r,8)|,_,, on the surface of a sphere of radiugan be

written as an infinite sum of a series of Legendre functions,

U(rBe)|,_,= iUnPn (cosH) (4.18)
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whereUy, is a velocity series coefficient. By multiplying both sidelsEguation 4.16
by Pm(cosB) sin®, integrating from 0 tat, and using the orthogonality condition (Equa-
tion 4.11) we can find the velocity series coefficiddt, for any given velocity profile,
(U (r7 e>|r:a)
1\ /™ .
Un= (n+ 5) / U (r,0)|,_, Pn(cosB)sin6d6 (4.19)
0

By equating Equation 4.16 evaluated at a and Equation 4.18,

_ —ipcUn

An =
hi? (ka)

(4.20)

,we can find values for the unknown coefficients in terms ofublecity coefficients.
Substitution of Equation 4.20 into Equations 4.14 and 4itésthe value for the pressure

at any point on or away from the sphere as

2 h@ (kr)
p=—jpcy UnP,(cosD)
2,0 @ (ka)

(4.21)

Equations 4.21 and 4.19 fully define the pressure field prediiy an arbitrarily spec-
ified velocity profile. Once the frequenck)(of excitation, radiusd) of the sphere and
the velocity profile U (r,0)|,_,) are known, Equation 4.19 can be used to calculate the
velocity coefficientsJ,), and Equation 4.21 can then find the pressure at pogitién,

provided the infinite series is truncated to a finite valua.of

Equation 4.19 does not have a general analytical solutioartuitrary velocity profiles.
For some velocity profiles, such as a uniformly vibratingesptal cap on the surface of
a sphere, an analytical solution is possible. This velgmitfile is shown in Figure 4.2,

with the cap covering angl&, and vibrating with uniform radial velocity.
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Figure 4.2: A cap covering angly mounted on the surface of a sphere of radiygibrating with
uniform velocityug.

The velocity distribution on the surface of the sphere is,

U , 0<B<By
Uc = (4.22)
0 , BB
Substitution of Equation 4.22 into Equation 4.19 gives winedl solutions for velocity

series coefficient (Morse and Ingard, 1986, Page 343),

1 1
U, = n+—=1Ju / P, (X) dx
n < 2) 0 c0sBp n()

= %Uo [Ph-1(c0sBg) — P41 (cosBo)] (4.23)

This analytical solution can be easily calculated and ptesian excellent reference for

verification of the numerical models used in this thesis icti®a 4.3.

4.2.2 Monopoles and dipoles

The analytical method of solving sound radiation descrilbeSection 4.2.1 is only ap-
plicable to co-ordinate systems that are separable. Sadhation from arbitrary shapes
such as horn loaded loudspeakers require a different agprd&ey cannot be described

by a surface of a constant coordinate value (such-as in spherical coordinates for a
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sphere), and require a more general numerical method. Qheagyroach is the Bound-
ary Element Method (BEM) (Wu, 2000). This method, along witlle source super-
position method of Koopmann and Fahnline (1997), uses fmedsal solutions to the
Helmholtz equation (Equation 4.3) to provide numerical moels that can solve sound
radiation from arbitrary shapes. This section investig#te nature of these fundamen-
tal solutions as a precursor to introducing both the BEM iati®a 4.2.3 and the source

superposition method in Section 4.2.4.

The homogeneous Helmholtz equation (Equation 4.3) is dérassuming no additional
sources of mass are introduced into the fluid, and that thesvare propagating unhin-
dered in free space. If the injection (or removal) of a vaimgly small source of mass
per unit volume, g, is included in the derivation, then the inhomogeneous Helin

equation results,

02p (x) + k2P (X) = — jwPoGsd (X — Xs) (4.24)
Gs = “;:‘S (4.25)

where s is the volume velocity per unit volume (Fahy, 2001). A Greefinction

G(x | xs) is defined as any solution of Equation 4.24 with

1
Jo= —— 4.26
s 16Po ( )
The inhomogeneous partial differential equation@x | xs) is
002G (x | xs) + K2G (x| Xs) = —8(X — Xs) (4.27)

One such solution for this equation (Koopmann and Fahnlif8y7) is the free-space
Green’s function,

G(X | Xs) = ~— (4.28)
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where

R=[x—xe| = \/ (X=X5)2+ (y—yo) >+ (2 25)°

is the distance from the source point at a position defineddayovxs = {Xs, s, Zs}, t0
the field pointx = {x,y, z}. This solution to the free-space Green’s function repressiae
sound field due to a point source. Note that Equation 4.28 @uar when the source and

field point coincide.

A dipole is also a fundamental solution of Equation 4.27 jvéel from the linearised
equations of conservation of momentum and mass with theiaddif a localised force.
It represents the sound field of two monopoles in close priyioperating 180 out of

phase and is the directional derivative of Equation 4.28

V(X[ Xs) - Nns (4.29)

whereng is the unit vector describing the major axis of the dipole.

Conceptually, any solid surface, such as the surface of @ lloaded loudspeaker (see
Figure 2.11), can be replaced by a distribution of monopates dipoles. Both these
sources act at a point in free space, but because they aram@mtial solutions to the
differential equation, any combination, or even contirsidistribution, of these sources
positioned in space can be used to represent a sound fieldefféot of the surface is
replaced by the action of a distribution of forces alignechmal to the boundary, and can
be represented by a distribution of dipoles. An imposedargiacan be replaced with
the injection of volume velocity from a distribution of mgpales. Figure 4.3 shows a

representation of this effect.
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(@) (b)

Figure 4.3: A solid surface with an imposed velocity overt dithe surface, (a), can be replaced
by a suitable distribution of monopoles and dipoles, (b).

4.2.3 Boundary element method

The Boundary Element Method (BEM) is a numerical techniche ts able to model
the sound radiated by arbitrary shapes, such as horn loadeddeakers. It has been
used extensively in horn modelling, and an overview of tipiglization is given in Sec-
tion 2.3.4. The BEM has many different implementations, &easv all of them involve
the discretisation of the Kirchoff-Helmholtz (K-H) equati that describes a continuous
distribution of monopoles and dipoles over a solid surfatis section describes the
Kirchoff-Helmholtz (K-H) equation, and the advantages dighdvantages of an imple-
mentation of the BEM called “direct BEM”. It also briefly degmes the “indirect BEM”,

as well as different methods of modelling horn loaded loed&ers with the BEM.

The Kirchoff-Helmholtz (K-H) equation describes the sodiedd radiated from a solid
surface by a continuous distribution of monopoles and @gpadFigure 4.4 shows a repre-
sentation of the solid surfac® the exterior surface of closed volure The sound field
of interest is that exterior to the closed voluxeand the vectons represents the outward

normal of surface.

The Kirchoff-Helmholtz (K-H) equation can be derived froimetHelmholtz equation

(Equation 4.3) by using a vector identity and Green’s sedbedrem (Koopmann and
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Figure 4.4: Representation of solid surf&ehe exterior surface of closed volude used in the
derivation of the Kirchoff-Helmholtz equation.

Fahnline, 1997). Fahy (2001) gives a more physical deomagnd Juhl (1993) gives an

interpretation referencing Huygens'’s principle. The egumais,

. . . . . 0§ (x| x
c(x) () = [ oot (x5 80x | x) +px) Do gs (430
where
1, for x outside the volume V
c(x)=4q 3, forxon the surface S of the volume V (4.31)
0, forxinside the volume V

is a position dependent constant, ards a normal vector pointing away from the vol-
ume of interest. Equation 4.31 is discontinuous across uhace of the volume, and
results from the “treatment of the singular integral invotythe derivative of the Green’s
function” (Raveendra, 1999). For a non-smooth surfacene that is discontinuous, or
has sharp edges) values for this constant can be calculatedrically (Wu, 2000, Juhl,

1993).

Examination of the Kirchoff-Helmholtz (K-H) equation (Eapion 4.30) shows that the
pressure at any point on or away from the exterior surf&ef the volume of interest
can be represented by the surface integral of a combinatimmoopoles and dipoles. In

this equation, the monopole source strength is weightethéyensity times the surface
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acceleration, and the dipole source strength is weighteth®éysurface pressure. The
equation is important because it only requires a knowledghe surface of the solid
to calculate the sound field away from the solid. Given a ifhigtion of surface normal
velocity, once the surface pressure is found, the BEM catutate any pressure field,
and the dimension of the problem has been reduced by one. Aneahdiscretisation of
Equation 4.30 only requires discretisation of the surfacmterest, whereas alternative
techniques, such as a finite element discretisation of kaudt3, require a discretisation

of the whole domain.

Equation 4.30 cannot be solved directly, because the peessuthe exterior surface is
not knowna priori. Approximations to this equation exist in the form of the R#gh
integral and High Frequency Boundary Element Method (HIMBBbut these techniques

have been shown to fail when representing curved surfacesi(iet al., 2003).

The direct BEM finds the surface pressure by discretisingaign 4.30 with nodes and
elements similar to those used in FEA (Seybert et al., 1985, 2000). The geometry
of the surface is now represented by local interpolatiorfions. If the surface variables
are also represented by these same values (isoparameiniergk, see Juhl (1993), 4.4.3),
then the nodes represent the values of the surface varatidescrete locations, and shape
functions are used to represent the variation in surfadaehlas between the nodes. For

each element, the local representation can be written as,

P(X) = > Nubam (4.32)

Un(x) = ZNaVam (4.33)

whereNy is a shape functionpam is the discrete pressure at nodle@n elemenim and

Vam IS the discrete normal velocity at nodeon elementn.

If field point x is positioned at each of the nodal points, and the discr@i@sentations

of the surface variables used, then the surface integratjuation 4.30 now becomes a
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summation of integrals across each element and can be ttemwais

Nn Nn

i; le (C (Xs> Ni . N; N dS) Pi = i; le ( s JwpoNig (X| | X]) dS) Vi

(4.34)

The numerical integration technique used must be capaldeading with the singularities
found at the locations of the monopoles and dipoles, an thier many such techniques

available (Wu, 2000, Juhl, 1993, Telles, 1987, Wang and#t&b97).

Equation 4.34 can be written in matrix form,

[FI{p} = [G]{v} (4.35)

The application of boundary conditions, either a known gues, normal velocity, or

surface impedance, allows the formation of the problem,

[Al{x} = {b} (4.36)

In this thesis, only a velocity boundary condition will bensidered, an@A] = [F], {x} =

{p} and{b} = [G]{v}. This set of linear equations can be solved by standardisnlut
techniques (Matlab, 2002, LAPACK, 2004) and the surfacesgurees found. The field
pressures can then be easily calculated from a numericdémgntation of Equation

4.30.

There are a number of disadvantages to the direct BEM approdbe K-H integral

equation represents the sound field on the exterior of a fimteme. At the natural
frequencies of the interior of the finite volume, the extepooblem breaks down and
the matrix becomes ill-conditioned. This is well document€opley, 1968) and many
solutions have been attempted (Schenek, 1968, Burton alhet Mi971, Cunefare et al.,
1989, Juhl, 1993). The CHIEF technique of Schenek (1968)phaged to be a very

popular technique due to its simplicity. This techniqueseslan overdetermined system

The University of Adelaide. Department of Mechanical Emrggring.



4.2. Theory 95

of equations formed placing extra points inside the voluieterest, where the pressure
is zero (Equation 4.31). Provided the points are not platednedal line of the interior
solution, this will improve the matrix condition number aaitbw the matrix to be solved

in a least squared sense.

The direct BEM code used in this research isud 3D (Wu, 2000), a Fortran 77 im-
plementation using linear elements. The CHIEF method id tsevercome the interior
natural frequency problem. For this application the code madified to accept quarter

symmetric models, a change necessary to reduce overalhnen t

Another problem with the direct BEM occurs when the volumesded in the derivation
of the K-H equation, is required to represent a so calledh“dhiape”. Figure 4.5 shows a
“thin shape”, where two sides of the same surface are brdagbkther in close proximity
due to a thin dimension, resulting in spurious solutiongedatthin-shape breakdown”

(Martinez, 1991).

Thin 4
dimension y

Figure 4.5: Representation of a “thin shape”, where voliMjeh@s two sides of the same surface
(S) that are brought together in close proximity due to a thinetision.

This “thin-shape breakdown” problem means that the dirdeiiBhas difficulty in mod-
elling geometries that are best represented with a thimserfFigure 4.6 (a) shows a rep-
resentation of an axisymmetric horn loaded loudspeakerettemtiwith finite thickness
walls. The resulting volume, required for the direct BEM,ynntain a “thin-shape”
and produce spurious results. Another disadvantage ighkadirect BEM would re-
quire the entire surface of the resulting volume, both theriar and exterior of the horn,
to be discretised, effectively doubling the problem sizé ercreasing solution time. An
alternative to this approach is shown in Figure 4.6 (b), whiee horn geometry is embed-

ded within a spherical volume, and does not contain any tiifases (see, for example,
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the work of Henwood (1993) and Geaves and Henwood (1996))exa@ansion to this
approach is shown in Figure 4.6 (c), where the horn geomstgyribedded in a small
cylindrical volume. This approach minimises the numberlefreents used compared to
the approach used in Figure 4.6 (b), and is adopted in thgsHer direct BEM mod-
elling of horn loaded loudspeakers. The most convenientagah to modelling a horn
loaded loudspeaker is that of Figure 4.6 (d), where the heomtry is represented by
thin surface, where the walls are infinitesimally thin. Titiashal direct BEM methods are
unable to model thin surfaces, and alternative numericthous are required for this is

situation.

(@) (b)

() (d)

Figure 4.6: Different ways of representing horn surfacengetoy using the Boundary Element
Method.
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An alternative method to the direct BEM is the indirect fotation, and this technique
is discussed briefly here for completeness. Instead of ssirfgce velocity and pressure
as primary variables, it uses the difference in normal vgland pressure across a thin
surface. These are the single and double layer potentiatiuns described by Filippi
(1977) and developed by Hamdi and Ville (1986) and Vlahopsahd Raveendra (1998).
Itis capable of modelling thin surfaces directly, and whppleed to a surface enclosing a
volume, it can resolve the pressure both internally andreatly. It does not suffer from
the non-uniqueness problem of the direct BEM, but will suffem numerical roundoff
errors when the pressure difference between the intertbeaterior solutions is large at
these same frequencies. This is solved by the applicatian adhpedance surface on the

interior of the volume to damp out the interior resonant cese.

The indirect BEM, when solved by a variational principle]lyroduce symmetric ma-
trices, which reduces computational storage. Howevergbtlenique requires a double
integration across the surface of each element, and thenasgme for large problems

can become prohibitive (Raveendra, 1999).

This section can only touch on the different forms of Bougdalement Method. As a

starting point for further reference see Wu (2000) and vanrEg2000).

4.2.4 Source superposition technique

The source superposition technique of Koopmann and Fahlif97) is a numerical
method that can be used to solve the acoustic pressure fiettaded by, and acoustic
power radiated from, arbitrarily shaped surfaces. It isilsimo a Boundary Element
Method, but cannot be classified as such because it doesraotlgidiscretise and solve
the Kirchoff-Helmholtz equation (Equation 4.30). An exdese review of the literature
has not found any applications to horn modelling. This secaims to introduce the
theory of the source superposition technique and to ougotential advantages of the

method when it is used to model horn loaded loudspeakers.
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The source superposition technique is formulated as fellGwe surface is firstly divided
into N surface elements, much as in a traditional boundary eleteehhique. A com-
bination of monopoles and dipoles are placed at the centeadi element, the dipole
aligned normal to the element. The approximate solutiohéqtessure field can then be

found by a linear combination of thedkesimple sources,

N
p(x) = Z S {GVQ(X | Xv) + By [V (X | Xs) - ns]xszx\,} (4.37)
v=1

wheres; is the unknown source strength for souvg@nda, andf, are known constants

for different source types.

Different source types can be used to describe sound rawlittm different types of
surfaces: a distribution of monopoles best describe scadtidtion from a baffled source,
such as a piston placed in an infinite baffle; dipoles bestritescadiation from a thin
structure, such as a disk vibrating in free space, or a holaci such as that shown
in Figure 4.6 (d); and a linear combination of a monopole aipdld, called a tripole,
describes radiation from the exterior of an enclosed volufable 4.1 gives the different

values ofa, andp, for each source type.

| Source typd ay | By |
monopole | 1 | O
dipole 0 |i/k
tripole 1 |i/k

Table 4.1: Constants, andf3, for monopole, dipole and tripole sources.

The constants for the tripole source are chosen to removeinigueness problems that
would arise at frequencies corresponding to eigenvaluéiseointerior volume (Copley,
1968, Schenek, 1968, Burton and Miller, 1971). For a coreplétcussion of the ratio-
nale behind the choice of constants for each different sotype, see Koopmann and
Fahnline (1997, Section 3.3). The use of dipole sources siidke technique capable of

modelling thin surfaces directly, which is a significant adiage when modelling horn
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loaded loudspeakers.

The aim of the numerical method is to find the source strengthiloutions, for a given
boundary condition. Once these strengths are known, thedspressure can be recon-

structed anywhere in the field using Equation 4.37.

For most problems in acoustics, the velocity, or the ratijressure to velocity, is a known
boundary condition. Substituting Equation 4.37 into 4\vegian approximate solution for

the normal velocity,

N
V9= _ﬁ S S v {avG(x %) +B[VE(X | X9) Ny, } N (4.38)
v=1

Koopmann and Fahnline (1997) apply a matching techniquadcfrelationship between
the unknown source strengttss, &nd the known normal velocities, through the volume

velocity,

O, = / /5“ 7(x)-n dS(x) (4.39)

where§, is the surface associated with elemgrandu, is the volume velocity of element
K This is the average velocity over the surface of the elepmeattiplied by the surface

area of the element. Substituting Equation 4.38 into Equati39 gives

N ~
auzv_l—%//sﬂv{av@(x|xv)+Bv[vg(x|x3).ns]Xs:Xv}.nds(x) (4.40)

and this equation can be calculated for each element, lgadia system oN equations

for N unknowns. This can be written in matrix form
Us=u (4.41)

wheres = {81,52,...SN}T is a column vector of source strengthis+ {01,02,...0N}T is
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a column vector of volume velocities andl is the system matrix to be inverted, with

components

uw:_ﬁ / /S“ VOG0 %) +By [VE(X| X9) Nelyy, } N ASK)  (4.42)

The components can be evaluated over each element by siaBdassian integration for
triangles (Cowper, 1973) or quadrilaterals (Press et 8B2) of varying order, or by a
special integration technique (Koopmann and Fahnline7 1B@&ong, 1980) whep=v

and the integrand is singular.

The solution of Equation 4.41 will find the source strengdtpiired to represent the given
geometry and velocity distribution. Once these strengted@und, the sound field can

be reconstructed using Equation 4.37.

The source superposition code used in this research is k@7 program BWER
(Koopmann and Fahnline, 1997). This program has also beelifistbfor quarter sym-

metry.

This technique is likely to be efficient compared to a direahdirect BEM for a number

of reasons.

1. The number of entries to be inverted is dependent on thédauaf elements rather
than the number of nodes. This is discussed in DeBiesme €003b) and De-
Biesme et al. (2003a) and is especially relevant when the BE®& quadratic or

higher elements.

2. The technique is an approximate one that forces volunwiglof the numerical
sources to match the volume velocity boundary condition, laence the power
(and consequently far field pressure) is calculated acelyragven for vary coarse
meshes (Koopmann and Fahnline, 1997). A disadvantagetiththaear field may

not be correctly calculated.
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3. The technique implicitly allows the use of thin surfac&he direct BEM requires
a surface of substantial thickness, along with an attendi@mbling in the number
of elements, otherwise problems associated with thin satf@eakdown arise. The
direct BEM has been modified to include thin surfaces (Wu,5)9But this mod-
ification is not considered in this thesis as access to theva# is not generally
available. Another alternative is to use an indirect BEM moetwith a resulting

increase in matrix assembly time.

The source superposition technique has been adopted ithésis to model horn loaded
loudspeakers mainly because of its availability, efficieand ability to model thin sur-

faces directly.
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4.3 Comparison to analytical results

The exact analytical results for sound radiation from a splkcap vibrating on the sur-
face of a sphere are compared with the results obtained dsiect BEM and the source
superposition technique using the same mesh. This allosvertiors associated with the
numerical methods to be compared directly, without the erfae of mesh variation. A
spherical cap vibrating on the surface is a simplistic madi@ horn loaded loudspeaker
(see Section 2.1.2), however the analytical solution idyeealculated (Section 4.2.1) and

provides an excellent example for numerical model verificgt

The analytical solution for a 45vibrating spherical cap on the surface of a unit sphere
has been calculated using Equations 4.21 and 4.23. Theédunin in Equation 4.21 was
truncated at 100 terms, and the pressure calculated inrthielth at a radius of 18 This

distance compares with that used to measure horn loadegdeallers (see Section 5.2).

The sound field generated by a vibrating spherical cap onutiace of a sphere is quite
complex, and requires many terms in Equation 4.21 to coevdtgan be considered an

adequate test of accuracy of the numerical methods beiegtigated.

Figure 4.7, reproduced from Section 2.1.2 shows a polargflthe magnitude of the
measured pressure, normalised by the maximum pressura,46rvibrating spherical

cap, for three different non-dimensional frequencies= {3, 10, 20}.

Figure 4.7 also shows the beamwidth for each of these fregeenThe beamwidth is
defined as the angle formed by thé dB points, with reference to the maximum reading,
and the source centre (Davis and Davis, 1997) and is a meastine distribution of
sound in the specified plane. Figure 4.8 shows a plot of thenbédth versus frequency,
and is the baseline for comparison with the numerical methdte values of beamwidth

for the three frequencies shown in Figure 4.7 are also showFigure 4.8.

2For a definition of model verification refer to Babuska and ©¢2004).
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Figure 4.7: Polar plot of the magnitude of the measured pressiormalised by the maximum
pressure, for 45° vibrating spherical cap on the surface of a sphere. Bearhvigaalso shown
for each frequency.

Simulations of a 4% vibrating spherical cap on the surface of a unit sphere haea b
undertaken for both the direct BEM and source superpostgchniques. Figure 4.9
shows the surface mesh used to discretise the sphere. Tieesfement program RSYs
(Kohnke, 2001) was used to generate the mesh automatiaaththe mesh size was set
to be a nominal 6 elements per wavelength at the highestdrexyuof interest. Note
the quarter symmetry of the mesh. This is critical in redgdime overall solution time
of the model as the full sphere would contain four times asymardes and elements,

dramatically increasing memory usage, assembly time altiGotime.

A unit normal velocity boundary condition was placed over tibrating cap, represented
by the darker area in Figure 4.9. The pressure was calculathe far field at a radius
of 18a. In this case the number of variables to be solved is 147fdirect BEM and

1412 for the source superposition technique.

The beamwidth of the sphere was calculated for 135 non-diioeal frequencieskg)
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Figure 4.8: The variation of beamwidth with frequency fot% vibrating spherical cap on the
surface of a sphere.

ranging linearly from 1 to 21. The upper frequency was chdselmit the run time
required for the direct BEM method. Figure 4.10 (a) showswhration in beamwidth
with frequency for the analytical, direct BEM and source esyosition methods. The
agreement is excellent over the entire frequency rangé, ttv differences on this graph

virtually indistinguishable.

An error criteria will show the differences in the solutiamere readily. The errog, is

defined as

— B
e — |$test ref|

4.43
gref ( )

whereBiestis the beamwidth under test, amt is the reference beamwidth. In this case
Brest and Bres are the numerical and analytical beamwidths respectiétyure 4.10 (b)
shows a comparison of the error for both the direct BEM andsth&ce superposition
methods. The agreement between both methods and the aabsgilution is excellent,
with errors less than 1% for the direct BEM. The source supstion technique produces

a larger error of about 8% atka of 12.
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1476 Nodes
1412 Elements

Figure 4.9: Surface mesh of th8&° vibrating spherical cap on the surface of a sphérel¢ments
per wavelength).

As the speed of solution for this application is critical,argparison of the efficiency of
each technique is required. Table 4.2 compares the tima takeach solution technique.
The source superposition technique was found to producdtse®3 times faster than
direct BEM. All timing calculations in this chapter were fmmed on the same machine,

an Intel P4 1500 MHz with 512 Mb of RAM running Windows XP.

Method Total time | Time per frequency Factor
[seconds] [seconds]
Analytical 180 1.3 0.01
Direct BEM 51165 379 3.3
Source Superposition 15525 115 1

Table 4.2: Solution times for the analytical, direct BEM aadirce superposition techniques.

In summary, the source superposition technique produse#isdor far field pressure that
are almost indistinguishable from the direct BEM and anedytesults. It produces these
results 33 times faster than the direct BEM. The analytical techniguE0 times faster

than the source superposition, but is not generally aggkd® arbitrary geometries.
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Figure 4.10: The variation of beamwidth comparing anadftidirect BEM and source superpo-
sition results § elements per wavelength) ford®° vibrating spherical cap on the surface of a
sphere. Error is defined as Equation 4.43 whth the analytical beamwidth.
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4.4 Computational efficiency

The intended application of these numerical methods is hlapes optimisation of horn
loaded loudspeakers and because many hundreds (if notatids)sof calculations are
needed before a suitable design is found, the computatefficiency of the technique
is very important. A number of different techniques thatespap the solution time will

be analysed, including: the effect on accuracy of reduciegimdensity; modern iterative

solution methods; the use of axisymmetry; and multi-freapyesolutions.

4.4.1 Reduction in mesh density

The mesh density used in Section 4.3 was chosen using traastiimite element rule of
thumb of 6 linear elements per wavelength (Marburg, 2002)edi et al., 2000). Figure
4.11 shows a plot of a mesh with nominally 3 elements per vesagth at the highest
frequency of interest. In this case the number of varialdelset solved is 436 for the
direct BEM and 403 for the source superposition techniqug@ificant reduction from

the 1476 and 1412 required for the nominal 6 element per wagéh mesh.

The beamwidth of the sphere at the reduced mesh density wadatad for 135 non-
dimensional frequenciek®) ranging linearly from 1 to 21. Figure 4.12 (a) shows the
variation in beamwidth with frequency for the analyticakedt BEM and source super-
position methods. Again, the agreement is excellent overettitire frequency range,
with the differences on this graph virtually indistinguédite between the direct BEM and
the analytical technique. There is a greater differencegiten frequencies between the
source superposition technique and the analytical tedlertigan with the full 6 elements
per wavelength, but this level of error is deemed acceptivlenost design purposes,

especially when compared to likely errors that would ocawxperimental results.

Figure 4.12 (b) shows a comparison of the error for both thecdBEM and the source
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436 Nodes
403 Elements

Figure 4.11: Surface mesh of th& vibrating spherical cap on the surface of a sph@méments
per wavelength).

superposition method. Again the agreement between the t®thads and the analyti-
cal solution is excellent, with the error in the direct BEMidethan 1% for most of the
frequency range considered. The source superpositionisriess than 5% for most of
the frequency range, exceptkd = 12, where it jumps to 25%. Equation 4.43 is a very
sensitive measure of the sound field when the rate of charggaohwidth with frequency
is large, because small changes in the beamwidth will ledarg® changes in the error
estimate. This quantity is perhaps not a good measure of ender these conditions.
Figure 4.12 (b) shows the large errors &teeof 12 are associated with the sharp jump in

beamwidth at this frequency.

Table 4.3 shows the results for the solution times. The sosuperposition technique

was found to produce results 6 times faster than the diret.BE

More importantly, as shown in Table 4.4 the time taken touale the solution for the
reduced mesh density compared to the full mesh density leasreduced by a factor of

11 for the direct BEM and a factor of 19 for the source supétipostechnique.
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Method Total time | Time per frequency Factor
[seconds] [seconds]
Analytical 180 1.3 0.2
Direct BEM 4860 36 6
Source Superposition 810 6 1

Table 4.3: Solution times for the analytical, direct BEM awdirce superposition techniques with
reduced mesh density for calculations of sound radiatiom @45° vibrating spherical cap on the
surface of a sphere.

Method Time per frequency Time per frequency Factor
6 EPW 3 EPW
[seconds] [seconds]
Direct BEM 379 36 11
Source Superposition 115 6 19

Table 4.4: Overall solution speedup with reduction in meshsdy for calculations of sound
radiation from &5° vibrating spherical cap on the surface of a sphere.

In summary, far field solutions that calculate beamwidthbioth the direct BEM and the
source superposition technique, do not need as high a maskiydas has been tradition-
ally associated with BEM. This reduces calculation timentatically without compro-

mising accuracy.
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Figure 4.12: The variation of beamwidth comparing anadftidirect BEM and source superpo-
sition results § elements per wavelength) ford®° vibrating spherical cap on the surface of a
sphere. Error is defined as Equation 4.43 whth the analytical beamwidth.
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4.4.2 Fastsolvers

The solution of the system of linear equations for both the@®superposition and direct
BEM techniques examined in this thesis was performed wiahddrd F77 implementa-
tions of readily available scientific software subroutifdries; Numerical Recipes LU
decomposition (Press et al., 1992, Section 2.3) angAck (LINPACK, 2004) QR fac-
torisation respectively. Details of both the LU and QR deposition can be found in

standard texts on numerical analysis (Golob and Van Loa®6,1Press et al., 1992).

The standard implementations of these routines do not méikgert use of modern
processor architecture. The routines made available bizAlrack (LAPACK, 2004)
linear algebra subroutine library make use of thenB library (BLAS, 2004) for basic
linear algebra operations. A highly optimised version eAB, which is automatically
tuned for maximum speed on a given processor (Whaley et@21)2 as well as higher
level LAPACK routines are used by theMLAB (Matlab, 2002) numerical programming
language. An interface between the source superpositidhadeode (PwWER) and
MATLAB was developed. This allowed access to the fast direct solwailable in la-
PACK, as well as a platform for rapid development of other sohzrd techniques to
speed up the solution times, with the ultimate aim of optingggshe geometry to give a

required beamwidth.

An alternative to the direct solution of the system of lineguations by decomposition
technigues such as those mentioned above is available ifottmeof iterative solvers.
These methods are motivated by the large cost associatedhveitdirect solution of a

system of linear equations (Press et al., 1992, Sectior).2.11

Iterative solvers work by repeatedly improving an appraadensolution to a system of
linear equations, until that solution is deemed to be at¢euraough (see Barrett et al.
(1994) for a full description of current iterative solvechmology). The rate at which it-

erative solutions converge is governed by the distribubiogigenvalues of the coefficient
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matrix, and a preconditioned iterative technique is oneithvlves a second matrix that
transforms the coefficient matrix to improve its spectrunsuélly the preconditioning

matrix is an approximation to the original matrix that carelasily inverted.

Iterative solvers refine the solution until they reach a stoferion. In this case, the
criterion is when the norm of the residual vector has beenaed below a predefined

tolerance,

tol = |us® —ul|_ (4.44)

whereU is the coefficient matrixy is the boundary condition vectat? is theith iteration

of the solution and|x||, = <|x1|2+...+ |xn|2> * is the vector 2 norm ok (Golob and

Van Loan, 1996, Section 2.2.1).

Iterative solvers have been used successfully to prodym@zgipnate solutions to systems
of linear equations in direct BEM (Migeot et al., 2000), altigh they usually require
some sort of preconditioning (Chen, 1999). An extensivesrewf the literature has not
found any reference to the use of iterative solution methattsthe source superposition

technique.

This section reports on an investigation of the speedup lutiea times obtained by
applying advanced direct solvers as well as a modern weratlution technique, the
Generalised Minimal Residual (GMRES) method, to the sosuperposition technique.
Figure 4.13 (a) shows the results of the original F77 direties compared to the di-
rect solver available in MrLAB, as well as the GMRES solver with a tight x110°)
and loose (& 10~3) stopping tolerance. There is no discernible differendsvben the
solutions, and this is confirmed by the relatively small efrothe solution, defined by
Equation 4.43 withB,¢s the original direct solver beamwidth. Figure 4.13 (b) shaws
comparison of this error for both direct BEM and the sourgeesposition method. The

error is less than.b5% for all of the frequency range considered, and the ernothfe
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tight (1 x 10-5) tolerance GMRES solution and the direcaM.AB solver overlay. This
implies that there is a small fundamental difference betwike direct original solver and

the direct MaTLAB solver.

Figure 4.14 compares the error between therM\B direct solver and the GMRES iter-
ative solver with varying toleranceB(es is now the MATLAB direct solver beamwidth). It
shows that there is negligible (less thaB%) difference between the loose10-3) and

tight (1 x 10-°) tolerance GMRES solver and theAvLAB direct solver over the entire

frequency range of interest.

Table 4.5 shows the solution times for each method. TheaMB direct solver is 4
times faster than the original solver, while the iteratieésers only provide a marginal

improvement in speed.

Method Total time | Time per frequency Factor
[seconds] [seconds]

Direct Original 15525 115 3.9
Direct solver MATLAB 4018 30 1
GMRES Tol 1x 10°° 3457 26 0.9
GMRES Tol 1x 103 3140 23 0.8

Table 4.5: Total solution times for the original direct ssiand alternative solvers for calculations
of sound radiation from 45° vibrating spherical cap on the surface of a sphere usingaties
superposition technique.

The reason for the marginal improvement in speed can be foyrekamining the ratio
of time spent assembling the equations (70%) to the timetsgmving them (30%) for
the direct MaTLAB solution. Comparing the solution times for each solver ibldat.6
shows that a factor of 3 speedup can be gained by using ativieesalver with a loose

tolerance, without loss of accuracy.

The GMRES technique reduces the residual of the solutioretowbthe stopping tol-
erance of 1x 1078 in 40 iterations, and to & 103 in 27 iterations, without precondi-

tioning. With the application of the diagonal of mattik (the matrix to be inverted to
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Figure 4.13: The variation of beamwidth with frequency wditifferent solvers § elements per
wavelength) for ad5° vibrating spherical cap on the surface of a sphere. Erroefied as
Equation 4.43 withB,e; the original direct solver beamwidth.
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Figure 4.14: The variation of error between tNeaTLAB direct solver and GMRES iterative
solvers 6 elements per wavelength) ford®° vibrating spherical cap on the surface of a sphere.
Error is defined as Equation 4.43 withe; the MATLAB direct solver beamwidth.

Method Solver time| Factor
[seconds]
Direct MATLAB 1210 1
GMRES Tol 1x 10°° 664 0.55
GMRES Tol 1x 102 350 0.29

Table 4.6: Solver solution times for tMATLAB direct solver and GMRES iterative solvers for
calculations of sound radiation fromd&° vibrating spherical cap on the surface of a sphere using
the source superposition technique.
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find the source strength, see Equations 4.41 and4.42) asdbenglitioner, the number
of iterations to reduce the residual to less than10-° was 34, however the total time
of solution increased due to the extra work required to agpdypreconditioner. Figure
4.15 shows a scaled image of the absolute value of a typialka= 9. The matrix is

extremely diagonally dominant, with good condition numaed excellent performance

with iterative solvers.
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Figure 4.15: Image d20log 10(ﬁ) for ka= 9 showing the extreme diagonal dominance of

[Umax|

the matrix produced by the source superposition methoddioutations of sound radiation from
a4d5’ vibrating spherical cap on the surface of a sphere.

In conclusion, the GMRES iterative solver with a loosex(10~%) tolerance provides
excellent performance in solving the linear equations pced by the source superposi-
tion technique. The difference in performance between ththads would probably be
greater for larger problems where direct solver solutiaretis typically of the order of
N2 (Golob and Van Loan, 1996), whekeis the size of the matrix, whereas the iterative
solution time can be of the order b (Barrett et al., 1994). The bottleneck in solution
time is the large amount of time taken to assemble the mdirand methods to improve

the overall speed of solution must address this issue.
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4.4.3 Rotational symmetry

The implementation of the source superposition techniguoieoglied in ®RWER (Koop-

mann and Fahnline, 1997) contains an option to speed thenbBsef structures with
rotational symmetry. This option reduces the number ofgiragons required by calcu-
lating the matrix for one sector only and copying the matmtries for the remaining

sectors.

For axisymmetric structures, an arbitrary number of seatan be chosen. In this case, 12
sectors were chosen as seemed a reasonable compromiserbdte@umber of sectors
(decreasing matrix assembly time) and the total numberashehts (increasing matrix

inversion time). Figure 4.16 shows the quarter symmetf€)(Bhesh with 12 sectors.

1241 Nodes
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2l
Ve & o g

0.8 77777
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0.6

0.4

0.2

Figure 4.16: Surface mesh of th&° vibrating spherical cap on the surface of a sphere W2th
rotationally symmetric sector§ €lements per wavelength).

Figure 4.17 (a) shows a comparison of the beamwidth evaluaith both the full and
rotationally symmetric mesh. This mesh, generated at a malndiensity of 6 elements
per wavelength, contains 1200 elements. The mesh showgume=4.9, also generated at

a nominal density of 6 elements per wavelength, contain2 gfments. There should be
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essentially no difference between the two solutions, wiadonfirmed by the error in the
solution, shown in Figure 4.17 (b), defined by Equation 4.48 @ the MATLAB direct
solver beamwidth. The error is less than 2% for most of thgueacy range considered,

with a peak of 4% aka= 12.5.

The time taken to assemble the full and rotationally symimetethods is shown in Table
4.7, where the rotationally symmetric method is 5 timesdiagtan the full method, with
the change in the solution minimal, and related to the changeesh topology rather than

any error in applying rotational symmetry.

Method Assembly time| Factor
[seconds]
Full mesh assembly 3957 5.2
Rotationally symmetric mesh assembly 760 1

Table 4.7: Matrix assembly times for the the full and rotadithy symmetric methods for 45°
vibrating spherical cap on the surface of a sphere usingaimes superposition technique.

In conclusion, the use of rotational symmetry allows a ad&sible speed up in matrix as-
sembly time for axisymmetric structures with essentiatiyass in accuracy. This method

has the disadvantage that is is not applicable to shapeswtitbtational symmetry.

The University of Adelaide. Department of Mechanical Emrggring.



4.4. Computational efficiency 119

180

T
- = Standard mesh
— Rotational symmetry

160}

1401

120}

100

Beamwidth [Degrees]
e}
=

2]
o
T

401

20 1 1
0 5 10 15 20
ka

(a) Beamwidth

25

T T
— Rotational symmetry \

20

T

H
o1
T

I

Beamwidth error [%]
[EEY
o

oL\~ ,LM/L

0 5 10 15 20
Frequency [Hz]

(b) Error in the beamwidth

Figure 4.17: The variation of beamwidth with frequency Wit and rotationally symmetric
methods § elements per wavelength) fod&° vibrating spherical cap on the surface of a sphere.
Error is defined as Equation 4.43 willis the MATLAB direct solver beamwidth.
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4.4.4 Multi-frequency solutions

The techniques described in previous sections aim to iseréfze speed of solution at
a single frequency. However, most applications will regualculations over a range
of frequencies. If some part of a single frequency calcotatan be reused at other
frequencies, then the time saved in calculating that pasaved at each frequency, and

the total cost of calculation is reduced.

One such approach is frequency interpolation of the assimbhtrices (Benthien and
Schenck, 1991, Kirkup and Henwood, 1992, Wu et al., 1993¢Badra, 1999, Migeot
et al., 2000, von Estorff and Zaleski, 2003). If the assenobiyre matrices is performed
at a few key frequencies, and the matrices at frequenciestineen the key frequencies
efficiently interpolated, then the total cost of solutiomdee reduced. Such an approach
could be taken for the source superposition technique; emtbe implementation of any

one of these schemes is intricate, and beyond the scope ciittent study.

Another potential approach is to use a technique that ugesollntion at a key frequency
to speed the subsequent solutions at the intermediatedineggs. This method, described
in Kirkup and Henwood (1992) and Raveendra (1999), usesaatite approach where
the factorisation of a matrix at a key frequency is used asaqgnditioner at the inter-
mediate frequencies. The factored matrix is an approximagse to the solution at the
new frequency. Both references appear to use simple stayiaerative solvers (Barrett

etal., 1994).

For the application considered in this thesis, the solugdactorised using LU decom-
position at key frequencies, and the factorisation usedpme@nditioner to the GMRES
technique. It has been found that the number of iteratiogsired to reduce the solution
error to below 1x 1073 was 27 iterations for the standard GMRES and 5 iterations for
the preconditioned GMRES. This saving may be significanhevith the extra cost of

evaluating the preconditioner.
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The times for solution of the direct, standard and precoo#d GMRES solvers are
shown in Table 4.8. Preconditioning was applied betweenvé@lg spaced key frequen-
cies. The additional cost of applying the preconditionera@ases the total solution time,

even though the number of iterations is decreased.

Method Solution time| Factor
[seconds]
Direct MATLAB 1210 45
GMRES Tol 1x 102 350 1
Preconditioned GMRES Tol ¢ 103 640 1.8

Table 4.8: Solution times for the preconditioned multigiiency GMRES solver, standard GM-
RES solver and the dire®ATLAB solver for ad5° vibrating spherical cap on the surface of a
sphere using the source superposition technique.

In summary, a technique that speeds the iterative solufitimeomatrices formed by the
source superposition technique has been developed, andgti€ation to the problem
at hand investigated. It uses the factored solution at kexyuencies to precondition the
iterative GMRES solver used in Section 4.4.2; however tras wot found to speed up

the solution time for the problem considered here.

Horn Loaded Loudspeakers. Richard C. Morgans.



122 Chapter 4. Fast boundary element methods

4.5 Full model

This section describes the implementation of all of the néples developed in Section
4.4 to speed up simulations of a*ABbrating spherical cap on the surface of a unit sphere;
The mesh shown in Figure 4.18 is used to provide a geomethyatieast 3 elements per
wavelength; rotational symmetry with 12 sectors is usedoeged up matrix assembly;
and the standard (non-preconditioned) GMRES solver witihoad (1x 10~2) tolerance

is used to reduce the total time for the simulation.

417 Nodes
408 Elements

Figure 4.18: Surface mesh of th&° vibrating spherical cap on the surface of a sphere w2th
rotationally symmetric sector8 glements per wavelength).

Figure 4.19 (a) shows the results of applying these teclesigo the solution compared
to a baseline MTLAB source superposition simulation. There is some error adtes
frequency range considered, and this is mainly due to tHerdiit mesh topology, as
the GMRES solver has been shown to give very little diffeeebhetween solutions for
different tolerances (Figure 4.14). The error in the solutiwith B¢ the MATLAB direct
solver beamwidth, is shown in Figure 4.19 (b). Itis less th&nfor most of the frequency

range considered, with a peak ab% atka= 17 and 225% atka= 12. This level of
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error is deemed acceptable for most design analyses.

The solution times for the source superposition technigtlerneduced mesh density, iter-
ative solver and rotational symmetry assembly (the “fast@®superposition” technique)
is compared to the baseline source superposition techimgplemented in MTLAB, and
the direct and source superposition F77 codes in Table #8fast source superposition
technique is 67 times faster than the original F77 code afdig#s faster than the di-
rect BEM method. It is now considered fast enough to be uses @smponent in an

optimisation technique.

Method Total Time / Freq| Factor
[seconds] [seconds]
Direct BEM 51165 379 220
Source Superposition 15525 115 67
Source superposition NrLAB 4018 30 17
Fast source superposition 233 1.7 1

Table 4.9: Solution times for the standard solvers and thiestaurce superposition technique for
a45° vibrating spherical cap on the surface of a sphere.
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Figure 4.19: The variation of beamwidth with frequency foe fast source superposition tech-
nique and the diredfAATLAB solver for ad5° vibrating spherical cap on the surface of a sphere.
Error is defined as Equation 4.43 wilhe: the MATLAB direct solver beamwidth.
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4.6 Conclusions

This chapter has described the development of techniquraneatically reduce the time
required to simulate the far field acoustic response (asumnedby the beamwidth) from
a vibrating spherical cap on the surface of a sphere. Thisssnalistic model of a

horn loaded loudspeaker (see Section 2.1.2), howeveniigas an excellent example for
numerical model verification (Babuska and Oden, 2004) s#iue analytical solution

is easily calculated (Section 4.2.1).

Analytical solutions for a 45vibrating spherical cap mounted on the surface of a unit
sphere have been rigorously compared with those obtainaddn implementation of the
direct BEM (Wu, 2000) and a source superposition techniglo®gmann and Fahnline,
1997). Excellent agreement between these results was flaundesh densities of 6
elements per wavelength, the minimum recommended mesitylEwdBEM simulations
(Migeot et al., 2000). The source superposition technigae significantly faster than the

direct BEM for comparable accuracy in the far field.

There was also excellent agreement between the methodsiestadensity of 3 elements
per wavelength. This is a significant finding as it allows #euction of mesh density, and
hence matrix size and solution time, for a given accuracyaofiéld solution. Alterna-

tively, accurate solutions can be obtained at higher fregies than previously expected

for a given mesh density.

It has been found that the source superposition techniguiipes matrices that are highly
diagonally dominant, are very suited to iterative solutiathods such as GMRES, and
do not require a preconditioning matrix. The time taken seasble the matrix was found
to be much greater than the solution time for the problemsidened in this thesis, and
iterative solutions to the source superposition technigag provide greater benefit for

larger problems.

Because the time taken to assemble the source superpasdio is the limiting factor,
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a method that made use of rotational symmetry was investigdt was found that the
matrix assembly time was reduced by a factor of 5 with no lnssccuracy, but only for

rotationally symmetric meshes.

A technique that speeds the iterative solution of the medriormed by the source super-
position technique has been developed. It uses the factmletion at key frequencies
to precondition the iterative GMRES solver used in Sectigh24 Unfortunately it was

found to increase overall solution time for this problem.

The bottleneck in solution time for the size of problem exaai here was found to be
the matrix assembly time. The solution time was found to lghlgi dependent on the
number of elements, and for fast computation, every eftosugd be made to reduce the

number of elements in the simulations.

The implementation of all of these speedup techniquessdaltie “fast source superpo-
sition” technique has been shown to result in solution tithes are 67 times faster than
the original implementation of the source superpositiammméque, and 220 times faster
than the direct BEM, with no loss in accuracy, for prediciaf the beamwidth from a
vibrating spherical cap mounted on the surface of a unitrgph€his technique is now

fast enough to be used as a component in an optimisationitgehn

This work can be regarded as verification (see Babuska and,2064), ensuring that the
correct equations are solved by the software. The next sthilpe work, validation, that
is comparison with experimental data to see how well the ojusmrepresent the physical
system, is undertaken for the source superposition teakrilgChapter 5. It should be
noted, however, that the source superposition techniquelissalidated for calculations
of acoustic power radiated from vibrating structures (Kmapn and Fahnline, 1997),
and that accurate calculations of power imply that the fdd fie correctly modelled.
The source superposition technique is also expected tompenivell when calculating

beamwidth for models other than a simple sphere.
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