Subject: 300B SET Project - Part 2: The output stage some more Posted by Damir on Sun, 01 May 2005 14:20:12 GMT
 View Forum Message <> Reply to Message

At the end of the Part 1, there are some typing errors, the proper formulas are:
K2~[Ua0-(Umax+Umin)/2]/(Umax-Umin)
$\mathrm{Pa}=\left[(\operatorname{lmax}-\mathrm{Imin})^{*}(\mathrm{Umax}-\mathrm{Umin})\right] / 8<\mathrm{p}>10$.) We can examine various other load-lines through our
OP, for example, $\mathrm{Ra} 2=6 \mathrm{kOhms}$ and $\mathrm{Ra} 3=1,5 \mathrm{kOhms}$ in addition with $\mathrm{Ra} 1=3 \mathrm{kOhms}$ load line we determined (we "rounded" ra on the first "standard" value). See Fig. 5.

Using "general" formula Ra=(Ua max-Ua min)/(la max-la min), we can draw the various load-lines by the little geometry, see Fig. 6.

We have the triangle, with Ua, la, Ra sides. We must find a "slope" of Ra, or angle B. Very easy - for $R a=3000$ Ohms, we can draw the line through, say $A^{\prime}=100 \mathrm{~mA}$ and $\mathrm{B}^{\prime}=300 \mathrm{~V}$, using Ua min=0 and la $\min =0, \mathrm{Ra}=300 \mathrm{~V} / 0,1 \mathrm{~A}=3000$ Ohms. Our Ra1=3k line through op. point O=350V/-70V/80mA we can draw like a parallel line to the line A`B` we just got, "preserving" the angle B.

Back to Fig. 5 - our point A1 is intersection of the $U g=0$ line and Ra1=3k line, and correspond to $115 \mathrm{~V} / 158 \mathrm{~mA}$. Point B1 is intersection of the Ra1 line and $\mathrm{Ug}=-140 \mathrm{~V}$ line, and correspond to $540 \mathrm{~V} / 16 \mathrm{~mA}$.

Verification: Ra1=(540-115)/(0,158-0,016)=2993 Ohms
Then Ua1=425Vpp=212,5Vp=150,26Vrms, and then
$\mathrm{Pa} 1=\mathrm{Ua} 1^{\wedge} 2 / \mathrm{Ra} 1=150,26^{\wedge} 2 / 3000=7,53 \mathrm{~W}$, or
Pa1=la1^2*Ra1=0,0502^2*3000=7,56W, or a1=Ua1*la1=150,26* $0,0502=7,54 \mathrm{~W}$, or "direct", in pp values:
$\mathrm{Pa}=\left[(540-115)^{*}(0,158-0,1016)\right] / 8=7,54 \mathrm{~W}$
In the similar way we can can determine Ra2=6k load-line, first find the temporary A2` and B2` points, say from Ra2=600V/100mA=6kOhms, parallel line through O, and then our point A2 "says" $100 \mathrm{~V} / 122 \mathrm{~mA} / \mathrm{Ug}=0 \mathrm{~V}$, and point B2 $580 \mathrm{~V} / 42 \mathrm{~mA} /-140 \mathrm{~V}$.

Verification: Ra2=(580-100)/(0,122-0,042)=6000 Ohms
$\mathrm{Pa} 2=\mathrm{Ua} 2^{\wedge} 2 / \mathrm{Ra} 2=169,7^{\wedge} 2 / 6000=4,8 \mathrm{~W}$, or $\mathrm{Pa} 2=\mathrm{la} 2^{\wedge} 2^{*} \mathrm{Ra} 2=0,028^{\wedge} 2^{*} 6000=4,8 \mathrm{~W}$.
Or Pa2=la2*Ra2=169, $7^{*} 0,028=4,8 \mathrm{~W}$, or $\mathrm{Pa} 2=\left[(580-100)^{*}(0,122-0,042)\right] / 8=4,8 \mathrm{~W}$. Much lower power, but the distortion is much smaller, too:
$K 2 \sim[350-(580+100) / 2] /(580-100)=2 \%$.
Interesting is the Ra3=1,5kOhms case, smaller then "optimum" Ra1=3k. We can see that sinusoidal input signal around -70 V , from -30 V up to -110 V (80Vpp) "produces" resonably "clean" output Ua3, from about 230V to about 440V (210Vpp), or Pa3=Ua3^2/Ra3=74,25^2/1500=3,68 W, but then our tube "runs out of current", or in another words, we "crossed" 160 mA "upper" limit. The consequences are that with full input "swing" from Ugk=0v to Ugk=-140V, our output sinusoide is limited, or part of it is "clipped off" - large distortion (of course, we talk about
"theoretical" class A1 here). Actually, $\mathrm{Ra}=1 \mathrm{k} 5$ condition can be reached if $\mathrm{Rsp}=4$ Ohms, instead of the "nominal" 8 Ohms. See Fig. 7.
11.)We can now examine some properties of the real OPT, I have a pair of "Lundahl" LL1664/80mA, 3k:8 Ohms. It's data are somewhat limited, but here are some:
-max. output power Pout $=10 \mathrm{~W} / 30 \mathrm{~Hz}$
-primary inductance $\mathrm{Lp}=22 \mathrm{H}$
-primary leakage inductance $\mathrm{Lw}=8 \mathrm{mH}$
-primary "static" resistance Rw pr $=148$ Ohms
-secondary "static" resistance Rw s $=0,5 \mathrm{Ohms}$
-turns ratio $\mathrm{n}=19,2: 1$
-We can calculate the LF power bandwith: $\mathrm{f} \mathrm{pb}=\mathrm{Ra} / 2^{*} \mathrm{Pi} \mathrm{F}^{*} \mathrm{~L}=21,3 \mathrm{~Hz} /-3 \mathrm{~dB}$, or in other words, OPT can "handle" half the power (5 W) on the $21,7 \mathrm{~Hz}$ - where the load Ra is equal to the reactive impedance of the OPT. Or from $30 \mathrm{~Hz} / 10 \mathrm{~W}$ (full power data), we can find -3 dB power bandwith f $\mathrm{pb}=30 / 1,4142021,2 \mathrm{~Hz}$.
Small signal frequency response is larger, $\mathrm{f} s \mathrm{~s} \sim \mathrm{rp} / 2 \mathrm{Pi} \mathrm{i}^{\star} \mathrm{Lp} \sim 4,7 \mathrm{~Hz}$.
he high frequency response depends on the Lw and Cw , but we don`t have the value of the winding capacitance, Cw...
-Theoretical damping factor is the ratio between the primary load and tube internal anode resistance, $D F=R a / r p$, and in our case $D F=3000 / 650=4,6$. But, winding resistances are actually in series with $r p$, and referred to the primary, Rw=Rwpr $+R w s^{*} n^{\wedge} 2=148+0,5^{*} 19,2^{\wedge} 2=$ 332,3 Ohms. Then our DF=3000/(650+332,3) ~ 3 times.
-Winding resistances have another bad feature - we have loss of our output power. he OPT efficiency is the ratio between the power at the speaker, Psp and "input" power Pa=Psp+Prw. we can examine both Rws and Rw pr in a series with the speaker, and then we have Rsec = Rsp + Rw. In our case, when we Rw "reffered" to the secondary side, we have $R w=R w s+R w p r / n^{\wedge} 2=$ 0,9 Ohms.
$\mathrm{E}=\mathrm{Psp} / \mathrm{Psec}=\mathrm{Usp}{ }^{*} \mid \mathrm{sec} / \mathrm{Usec}{ }^{*} \mathrm{Isec}=\mathrm{Usp} / \mathrm{Usec}$
Usp=Usec/($1+\mathrm{Rw} / \mathrm{Rsp}$), and then $\mathrm{E}=1 /(1+\mathrm{Rw} / \mathrm{Rsp})$.
In our case, $\mathrm{E}=1 /(1+0,9 / 8)=0,9$ or 90%. It means that 10% of our theoretical $\mathrm{Pa}=7,54 \mathrm{~W}$ (determined in chapter 10) would be heat in the winding resistances, Prw=0,75 W, and 90% or about $6,8 \mathrm{~W}$ would reach the speaker.
-We can try to find another OP for our 3k OPTs... For example, OP:Uak=320V, Ugk=-64,5V, la=80 mA . Plotting the $\mathrm{Ra}=3 \mathrm{k}$ line through this OP gives $\mathrm{Ua}=510-110=400 \mathrm{Vpp}$, and $\mathrm{la}=0,15-0,02=0,13 \mathrm{App}$. Then our $\mathrm{Pa}=6,5 \mathrm{~W}$, and $\mathrm{K} 2 \sim 2,5 \%$, not bad... Interestingly, our theoretical Ra formula gives $\mathrm{Ra}=64,5 * 3,9 / 0,08-650 \sim 2,5 \mathrm{kOhms}$.

12.) CONCLUSION:

Although our analyse is simplified, we can see zhat the "theoretical" Ra formula or load line analysis where la is "allowed" to swing from $0-2^{*} \mathrm{la} 0$ gives Ra with no "current limiting" and Pa close to the max. power for chosen OP. With linear tubes in the "middle" of their $\mathrm{Ua} / \mathrm{la} / \mathrm{Ugk}$ characteristics, "real" graphical analysis gives the results close to the theoretical values, based on voltage source model in seies with rp , and max. current swing.

However, it is "wise" to look at the resultant Ra like the minimum, or in another words, we can use a larger Ra with somewhat lower power, but with lower distortion and larger damping factor. In our case, we get Ra~2k8, and round it on the first "standard" value, Ra=3k like the minimum we'd like to use.
Although we only "touched" some of the OPT properties, we can see that the quality of the OPT (high Lp, low Cw,Lw,Rw...) is important.
13.) F A Q :
Q) Frankly - from all those graphs, math and formulas I understand absolutely nothing. However, I'd like to find the "best" OPT primary impedance for the 300B OP I really like: Uak=350V, $\mathrm{la}=60 \mathrm{~mA}, \mathrm{Ugk}=-74 \mathrm{~V}$. Please, answer in one sentence, and one formula max!
A) Use my formula $\mathrm{Ra}=\mu^{*} \mathrm{Ugk} / \mathrm{la}-\mathrm{rp}=3,9^{*} 74 / 0,06-700=4110$ Ohms, and "round" it on the larger "standard" value of 5 kOhms .
Q) Huh, but I`d like to use OPTs I have, \(2 \mathrm{k} 5 / 60 \mathrm{~mA} / 17 \mathrm{H}\). My buddy says that I can do it, you can`t go wrong with Ra>3*rp with 300B, and if I really need 5 k OPT that I can connect 8 Ohms speaker on the 4 Ohms taps on my OPT.
A) Your buddy can be right, SE is a very subjective thing, but see "chapter" 10 once more... And yes, your 2 k 5 OPT is now $\mathrm{Ra}=5 \mathrm{k}$ OPT by changing the turns ratio with connection of the 8 Ohms speaker to the 4 hms taps. But, it’s not quite the same like the "proper" 5 k OPT, for example Lp is now too small for $\mathrm{Ra}=5 \mathrm{k}$, and LF can be limited and more distorted. But, you can try it, your friend can be right again, SE is very subjective thing, etc.

Subject: Re: 300B SET Project - Part 2: The output stage some more Posted by Wayne Parham on Sun, 01 May 2005 21:52:04 GMT
 View Forum Message <> Reply to Message

Looks like the primary will need to be $4 \mathrm{k}-5 \mathrm{k}$ ohms, yes? And B+ should be 450 V , is that right? Thanks for all the groundwork!

> Subject: Re: 300B SET Project - Part 2: The output stage some more Posted by Forty2wo on Mon, 02 May 2005 01:14:14 GMT
> View Forum Message <> Reply to Message

Wow. Great reading. Thank you for taking the time and effort to present it...John

Subject: Re: 300B SET Project - Part 2: The output stage some more Posted by Damir on Mon, 02 May 2005 04:41:15 GMT
View Forum Message <> Reply to Message

For cathode biased amp, Uak=350V, Ugk=70V and voltage drop on the primary windind resistance Urw $p=148^{*} 0,08=11,84 \mathrm{~V}$. Then our $\mathrm{B}+$ is $350+70+12=432 \mathrm{~V}$ DC. 「'd "play" with similar OPs, but this is "working" version.And for the "optimum" Ra... depends of what OPT you have /can find:-)I have a LL1664 (3k:8 Ohms), but better solution would be LL1623 (3k/5k6:4,8,16 Ohms, 90 mA), then you have more options to try.:-)
Subject: Re: 300B SET Project - Part 2: The output stage some morePosted by hungnv on Fri, 19 Jul 2013 08:09:47 GMT
View Forum Message <> Reply to Message
Damir
Can you post the picture of Part 2 again, it was disappeared.
Thanks
Subject: Re: 300B SET Project - Part 2: The output stage some more
Posted by horny on Tue, 06 Jan 2015 15:14:10 GMT
View Forum Message <> Reply to Message
hello i am new here and really interested in de 300b projectbut i can't see the pictures in all the 300b set projectsis this some thing in my pc or are they really gone?
Subject: Re: 300B SET Project - Part 2: The output stage some more Posted by FL152 on Sun, 11 Jan 2015 18:09:16 GMT

View Forum Message <> Reply to Message

Gone, but the final schematic is in the "Projects" files.

