Home » Audio » Speaker » Backhorns
Re: Yes and no. [message #16449 is a reply to message #16435] Tue, 11 May 2004 20:58 Go to previous message
roncla is currently offline  roncla
Messages: 125
Registered: May 2009
Master
The volume of air that exists between the back of the driver and the horn throat is called the cavity of the horn. Any enclosed volume of air with a port (in this case, the throat of the horn) will act as a 1st order low-pass filter where:

Upper cut-off frequency = c * At / (2 * p * V)

Where:

V = Volume of cavity

At = area of port, i.e. horn throat area

c = Speed of sound

In two-way horn systems where the front of the driver loads a mid-horn, and the back loads the bass horn, it is of great importance that the dimensions of this cavity be calculated correctly. This is to ensure that there is a mechanical crossover between the two horns. However, in a back-loaded-only system such as this, it is really not that critical. The cavity's only mission here is to create a roll-off from a frequency where wavelength = an odd multiply of the horn's length, to avoid annulling when the out-of-phase waves from the back of the driver meets the in-phase waves from the originating at the front of the driver. We want to load ca 3 octaves into the horn (40Hz-320Hz). Theory then prescribes a relatively small cavity (ca 1,5 litres, space taken up by driver included) which also ensures good coupling of the cone's movements to the horn.

 
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Previous Topic: BW of rear loaded horns
Next Topic: Stopped at the Bose store
Goto Forum:
  


Current Time: Mon Jul 29 08:21:17 CDT 2024

Sponsoring Organizations

DIY Audio Projects
DIY Audio Projects
OddWatt Audio
OddWatt Audio
Pi Speakers
Pi Speakers
Prosound Shootout
Prosound Shootout
Miller Audio
Miller Audio
Tubes For Amps
TubesForAmps.com

Lone Star Audiofest