Quarter Wave Generators

Transmission Lines Negative Taper Transmission Lines Tapered Quarter Wave Tubes 'Voigt Pipes' Mass-Loaded Transmission Lines

Simulations

Martin J. King MathCAD Worksheets Fostex FE167E

Modeled Vs Measured

Simulation Rules

$F_{p} = F_{s} = 50 Hz$ $V_{p} \sim V_{as} = 32 Liters$ Driver position to cancel first or second overtone

Transmission Line (Straight End-Loaded Lines)

 $L = 62\frac{1}{2}$ $S_0 = S_L = 3*S_d (62in^2)$ Driver at closed end of pipe

Transmission Line (unstuffed)

Driver(red) and Port(blue) Output

Infinite Baffle Output(blue)

Transmission Line (unstuffed)

Brines

Acoustics

TL Impedance(red) and Infinite Baffle Impedance(blue)

Characteristics of a Transmission Line

Sharp 24dB/octave cut-off A double humped impedance curve Strong combined output at the bottom end Driver and port out of phase every other harmonic Flat to cut-off response will be boomy in-room

Transmission Line (lightly stuffed)

Driver(red) and Port(blue) Output

Infinite Baffle Output(blue)

Transmission Line (heavily stuffed)

Driver(red) and Port(blue) Output

Infinite Baffle Output(blue)

Transmission Line (heavily stuffed)

TL Impedance(red) and Infinite Baffle Impedance(blue)

Transmission Line (Negative Tapered Line)

L = 48"

$$S_0 = 3*S_d (62in^2) S_L = S_d (21in^2)$$

Driver at 0.21*L

Brines
Acoustics-ve Transmission Line
(unstuffed)

Driver(red) and Port(blue) Output

Infinite Baffle Output(blue)

Brines Acoustics -ve Transmission Line (lightly stuffed)

Combined Driver and Port Output(red) Infinite Baffle Output(blue)

FTA-2000

Brines Acoustics **Tapered Quarter-Wave Tube** ("Voigt Pipe") L = 84'' $S_0 = 0.1^*S_d (2in^2) S_1 = 3S_d (62in^2)$ Driver at 0.45*L

TQWP (unstuffed)

Driver(red) and Port(blue) Output

Infinite Baffle Output(blue)

Brines Acoustics (ligh

TQWP (lightly stuffed)

Combined Driver and Port Output(red) Infinite Baffle Output(blue)

Brines Acoustics Mass Loaded Tapered Quarter-Wave Tube

L = 60" $S_0 = 0.5*S_d (10in^2) S_L = 3S_d (62in^2)$ Driver at 0.54*L

ML-TQWP (unstuffed)

Driver(red) and Port(blue) Output

Combined Driver and Port Output(red) Infinite Baffle Output(blue)

ML-TQWP (lightly stuffed)

Combined Driver and Port Output(red) Infinite Baffle Output(blue)

Martin King's ML-TQWT

Mass Loaded Transmission Line

L = 40" $S_0 = 2.5*S_d (47in^2) S_L = 2.5S_d (47in^2)$ Driver at 0.25*L

ML-TL (unstuffed)

Driver(red) and Port(blue) Output

Combined Driver and Port Output(red) Infinite Baffle Output(blue)

Brines Acoustics (lightly stuffed)

Combined Driver and Port Output(red) Infinite Baffle Output(blue)

FT-1600 MkII

Straight End-Loaded Line62½Negative Tapered Line48Tapered Quarter-Wave Tube84ML Tapered Quarter-Wave Tube60ML Transmission Line40