
The Paraxial Approximation



Learning Objectives

Introduction to the paraxial approximation and its
importance in beam modeling



A transducer generates a complex beam of sound. Modeling that
complexity is a challenging task.

The modeling computational burden can be reduced considerably 
by introducing approximations. The paraxial approximation is
one of the most useful of those approximations. 

The Paraxial Approximation



The paraxial approximation models the transducer beam as a
quasi-plane wave where most of the sound is propagating in 

a given direction with an amplitude profile described by a 
diffraction correction term, C(x,y,z,ω). 
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The Paraxial Approximation

To illustrate the paraxial approximation in a simple  setting
consider a spherical wave. Suppose that we are only interested
in the spherical wave field in the vicinity of a particular direction
which we will take as the z-axis (i.e. x,y <<z)
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Then, since r = x 2 + y2 + z2
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Note that in obtaining this diffraction correction term we only
approximated the amplitude part of the spherical wave to first
order ( r ~ z) while we approximated the phase to second order.
This is because terms neglected in the phase must not only be small 
with respect to the terms retained but also must be small with 
respect to 2π if they are to be negligible.
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Consider the wave equation
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Our paraxial approximation for a spherical wave
satisfies this paraxial equation exactly:

There are other solutions, such as Gaussian waves
that also satisfy this equation and form important
building blocks for modeling ultrasonic transducer
radiation in complex problems
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The Paraxial Approximation
The paraxial approximation allows one to obtain diffraction
correction terms for many practical testing setups
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Limitations of Beam Models based on the Paraxial Approximation

near critical angles

cases where the surface curvature
varies rapidly over the beam width

at locations too close to
a plane  transducer or for
too tightly focused transducers

at high refracted angles


