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Abstract

This work is part of a project aiming at helping craftsmen to design and characterize their musical

instruments. Starting from a given wind instrument shape, our objective consists in choosing the

most relevant physical model able to predict the acoustical input impedance of this musical instru-

ment once constructed. The modeling of bells in brass instruments is still problematic as the limits

of plane wave approximation are known but no method is proven to give accurate results. The aim

of the present paper is to compare the results given by di�erent methods with measurements. Four

di�erent bells with known geometries are used in this study. These bells input impedances are calcu-

lated with a Boundary Element Method and with Transmission-Matrix Methods loaded with various

radiation impedance models and based on axial or curvilinear abscissa. Surprisingly, a simple 1D

wave propagation approximation based on curvilinear abscissa coupled with the radiation impedance

of a pulsating portion of sphere gives results very close to the measurement.

PACS no. 43.75.Fg, 43.20.Mv

1. Introduction

This work is part of a project aiming at helping
craftsmen to design and characterize their musical
instruments. Starting from a given wind instrument
shape, our objective consists in choosing the most
relevant physical model able to predict the acousti-
cal input impedance of this musical instrument once
constructed. Musical acoustics has been investigated
for a long time and a lot of models have been provided
[1]. Nevertheless, the modeling of bells in brass instru-
ments is still problematic as the limits of plane wave
approximation are known but no method is proven to
give accurate results.
Two e�ects have to be taken into account so as to

give a complete model of the horn: the wave propaga-
tion and the radiation.
One of the simplest and most e�cient method to

calculate the propagation inside a waveguide is the
Transmission-Matrix Method (TMM). This method
approximates the instrument structure as a sequence
of concatenated segments, cylinders or cones, each be-
ing mathematically represented as a 4x4 matrix in
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which the terms are complex-valued and frequency-
dependent. With an entire instrument described as a
transmission line, it is easy to calculate quantities at
the input end, de�ned as the usual point of excitation,
given quantities at the output end. The Transmission-
Matrix Method which is used in this paper is de-
scribed in the article of Caussé et al. [2].
This method proved to give results closed to the

measurement for wind instruments of cylindrical ge-
ometry [3]. However, for horns, it is not possible
to consider plane waves any more [4]. This is why
Nederveen and Dalmont [5] propose a low frequency
correction for the TMM in form of an additionnal
impedance that takes into account the transverse �ow
inside the horn. Nevertheless, a problematic issue is
that the wavefront is still unknown.
With regard to radiation, the problem of the acous-

tic radiation impedance of a cylindrical pipe is now
well known. Cases of un�anged and in�nitely �anged
cylinder have been solved [6, 7]. These results were
extended by Silva et al. [8] above the cuto� frequency
of the �rst higher order mode. They gave a non-causal
expression obtained by analytical and numerical �t-
ting to reference results from Levine and Schwinger
[6] for the un�anged case and extracted from the ra-
diation impedance matrix given by Zorumski [9] for
the in�nite �anged case.
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However, these radiation impedances cannot be
used in every cases. Indeed, the shape of a horn has
a strong in�uence on the acoustic wave propagation
and radiation, to such an extent that it is no longer
possible to use a plane radiation impedance. This is
why Caussé et al. [2] have introduced a correction for
the case of spherical waves, normalizing the Levine's
impedance by the ratio Ap/As where Ap and As are
respectively the planar and spherical areas. However,
this constant ratio does not account for e�ects due to
the curvature of the wavefront, such as modi�cations
of resonance features or phase. In order to obtain a
more adequate geometric model Hélie and Rodet [10]
gave an analytical formulae for the radiation of a pul-
sating portion of a sphere.

2. Experiment set-up and bells mea-

sured

2.1. Experiment set-up

For the input impedance measurement, a set-up de-
veloped jointly by CTTM (Centre de Transfert de
Technologie du Mans, France) and LAUM (Labora-
toire d'Acoustique de l'Universite du Maine) is used
[11]. In this apparatus, a small closed cavity in which
a microphone measures a pressure p1 (which gives an
estimation of the volume velocity of the source), is
connected to the back of a piezoelectric buzzer. The
measured pipe is connected to the front of the buzzer
via a small open cavity in which a second microphone
measures a pressure p2. Then the input impedance
can be calculated from the transfer function between
the two microphones.

The signal used as source is a logarithmic chirp sig-
nal of �ve seconds length (generated by the PC au-
dio sound card) leading to a frequency resolution of
0.2 Hz, from 10 to 2500 Hz (until 4000 Hz for the
long cone). Finally, the measurement is obtained by
averaging three acquisitions. The entire apparatus is
placed in an anechoic chamber whose temperature is
estimated before and after the acquisitions by measur-
ing the input impedance of a closed cylinder of length
624 mm and radius 10.9 mm. According to Macaluso
and Dalmont in [12], the measurement set-up allows
the determination of the resonance frequencies with
an uncertainty of about 0.2%. Moreover, this measure-
ment apparatus was �rst tested by the authors with
simple known cases, in particularly with the cylinder
mentionned before. The di�erence between the mea-
surement and the model (TMM with axial abscissa
and radiation with a �nite �ange from [13]) in fre-
quency was less than 0.15% for all resonance peaks.
This uncertainty allows to make a meaningful com-
parison between the di�erent models and the horns
measurements.

2.2. Bells measured

Four horns are studied in this paper. The �rst one is
a tenor trombone bell which starts, once the water
key and the slide removed, with a cylindrical section
of 10.4-mm radius. It begins to �are modestly, ter-
minating, in an abrupt �are to a radius of 110 mm,
after a 568-mm length. The second one is a 609.6-mm
trumpet horn which begins with a long part of cylin-
der of a 5.8-mm radius and ends at a radius of 61.1
mm. The last two bells are cones, one of whom is ex-
tended by a cylinder. The long cone is in fact the body
of a soprano saxophone. The geometry was measured
with an accuracy to within a hundreth of a millimeter
with precision tools, either on the mandrel which was
used to construct the trumpet bell, or directly on the
horn itself for the others. These geometries are shown
in Figure 1.

Their input impedance was measured six times, by
removing the bell each time from the impedance sen-
sor in order to study the reproductibility. The repro-
ductibility error is about 0.2% which is of the same
order than the measurement apparatus uncertainty.
Consequently, measurements of these horns can be
considered as a reference for the comparison with
models.

3. Models

For crafstmanship applications it is important to have
a reliable resolution that works for all geometries.
That is why the method that seems to be appropri-
ate for that case is a Transmission-Matrix Method
applied to a bore approximated by only truncated
cones or cylinders. Two propagation models, a plane
and a spherical, are made from the TMM in order to
study the particular case of horns acoustics where the
wavefront is quasi-spherical. The plane model is calcu-
lated along the horn axis whereas the spherical one is
computed along the bore pro�le (curvilinear abscissa).
Two models of radiation are chosen to be loaded to
the propagation models at the end of the horns: the
plane non-causal un�anged model of Silva et al. [8]
and the spherical second order high-pass model of
Hélie and Rodet [10]. Two complete models are thus
created: a plane model, made from the combination of
the plane propagation and the plane radiation cited
above, which is currently used in existing crafstman-
ship softwares, and a spherical model (made from the
combination of both remaining models).

A benchmark test was launched some months ago
to compare other methods with these two models and
is still in progress. Two methods have been tested for
the trombone horn for the moment. A Boundary Ele-
ment Method (BEM) is computed with two di�erent
meshes, one mesh directly realised on the 3D geometry
and another by meshing the bore (showed on Figure
1) and considering an axisymmetric problem. Then it
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Figure 1. Bores of the horns studied: (a) trombone horn, (b) trumpet horn, (c) cone with cylinder and (d) long cone.
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Figure 2. Comparison between the measurement of the
trumpet bell input impedance (in red) and the two TMM
models: the plane (in black) and the spherical (in grey).

is computed with Sysnoise [15]. The other method is
a Multimodal Method explained by Amir et al. [16].

4. TMM models for the trumpet

The behaviour of the input impedance of the trumpet
horn in Figure 2 is di�erent below and above the cut-
o� frequency Fc of the bell which is around 1300 Hz

(see Benade [14]). Indeed, below that frequency, reso-
nance peaks are sharp since almost all acoustic waves
are re�ected at the end of the bell, whereas after, the
radiation is more important and peaks decrease sig-
ni�cantly. It is clear that at high frequency the spher-
ical model is the closest to the measurement since it
realises a better impedance adaptation than the pla-
nar model. However, below the cuto� frequency, mod-
els need to be accurately compared with regard to
impedance resonance peaks. These peaks are de�ned
by three criteria: the frequency, the amplitude and
the quality factor. In order to help crafstmen to de-
sign their musical instruments, the frequency criterion
is the more important, as it is linked to the instru-
ment tuning. The amplitude and the quality factor
have a less audible e�ect as they in�uence the instru-
ment timbre. Therefore, this comparison is only done
on the frequency and the amplitude of all peaks which
are precisely determined with a peak �tting technique
using a least square method.

Results in Table I show that the spherical model
gives resonance frequencies closer to the measurement
than the planar one. That supports the hypothesis of
the quasi-sphericity of wavefronts which was experi-
mentally established in low frequency range by Jans-
son and Benade [4]. The measured input impedance
is expected to be located between the plane and the
spherical model. It is actually the case for the sec-
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Table I. Di�erences between TMM models and measure-
ment at low frequency for the trumpet horn

Resonance Measurement Plane Spherical

1st
Fr=202.87 Hz 0.83% 0.56%

A=29.00 dB 2.42 dB 2.40 dB

2nd
Fr=443.09 Hz 0.52% -0.37%

A=23.03 dB 1.20 dB 0.77 dB

3rd
Fr=676.53 Hz 1.18% -0.27%

A=18.59 dB 1.04 dB -0.49 dB

4th
Fr=913.41 Hz 1.48% 0.07%

A=16.00 dB 0.84 dB -1.38 dB

5th
Fr=1177.20 Hz 1.38% 0.26%

A=13.83 dB 1.80 dB -1.27 dB

Table II. Di�erences between TMM models and measure-
ment at low frequency for the trombone horn

Resonance Measurement Plane Spherical

1st
Fr=241.43 Hz 2.7% 1.8%

A=35.05 dB 0.41 dB -0.02 dB

2nd
Fr=517.22 Hz 2.8% 0.6%

A=23.89 dB 1.53 dB -2.52 dB

ond and third impedance peaks, with a measurement
closer to the spherical model. The low frequency of the
last resonances (lower than predicted by both plane
and spherical models) can be explained by the in�u-
ence of the radiation that starts to be more important
around these frequencies. No explanation can be given
about the reasons why the �rst measured resonance
has a frequency lower than predicted by both models.
Moreover it was checked (see section 2.1) that it was
not related to the measurement apparatus.

5. Benchmark test for the trombone

The comparison between the TMM models and the
measurement is now applied to the trombone horn.
Table II shows that the spherical TMM model is the
closer to measurement than the plane one. Further-
more, as it was established in section 4, the spherical
model realises such an impedance adaptation that it
approximates better the measurement. Consequently,
there is no point in comparing the plane model to the
others.

Owing to the long computation time for the BEM
and Multimodal method, resolution is rough and
peaks are not well de�ned, consequently it is not possi-
ble to compare the models above the cuto� frequency
for these methods (see Figure 3). For the moment we
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Figure 4. Di�erence between the modulus of the re�ection
coe�cient R calculated with each of the presented meth-
ods and the modulus of the re�ection coe�cient from the
measurement.

can say that the measurement still gives a �rst reso-
nance frequency above all the models and that the dif-
ference between models and measurement is less than
2% for the second peak. It is more interesting here to
analyse high frequencies by looking at the re�ection
coe�cient.
Figure 4 con�rms that the multimodal method is

not optimum for the moment. Indeed, the horn is sup-
posed to come out onto an in�nite �ange which does
not represent ideally the reality. A Perfectly Matched
Layer method (PML) applied to an un�anged case is
considered to compensate for that problem. In a BEM,
no approximation is done on the radiation, that is why
the 3D model solved with a BEM is the closest to the
measurement (di�erences between the 3D and the ax-
isymmetric models are only due to meshes). This com-
parison with other methods is still in progress, but the
�rst results show that, even if it is possible to have a
better accuracy, results from the spherical TMM are
of the same order of magnitude as other methods.

6. Results for the two cones

The small cone extended with a cylinder is used
as textbook case since the peak located toward the
trough of the impedance curve around 1500 Hz in
Figure 5 shows the interferences that appear with this
kind of geometry. Indeed, at the discontinuity between
the cylinder and the cone, some waves are re�ected
whereas others keep on propagating through the cone.
In the cone, as for the two other horns, the �rst mea-
sured resonance frequency is lower than these calcu-
lated with both TMM models. The spherical TMM
model is closer to measurement in frequency, espe-
cially at the impedance troughs. On the contrary, the
long cone gives results (see Figure 6) which are di�er-
ent from the previous ones.
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Figure 3. Comparison between the measurement of the input impedance of the trombone horn and results from di�erent
resolution methods.
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Figure 5. Comparison between the measurement of the
short cone input impedance (in red) and the two TMM
models: the plane (in black) and the spherical (in grey).

Contrary to the other horns, and as it can be seen
on Table III, the �rst measured resonance frequency
is higher than that computed with both models. This
di�erence may be an error due to a wrong discontinu-
ity correction from the measurement apparatus nor-
mally provided for a cylinder. Nevertheless, even if the
di�erence between the measurement and the models
decreases for the �rst peak by adding a 6 cm-long-
cylinder at the cone input, the �rst measured reso-
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Figure 6. Comparison between the measurement of the
long cone input impedance (in red) and the two TMM
models: the plane (in black) and the spherical (in grey).

nance is still higher than the ones computed. More-
over, for the �rst peak, the di�erence on the frequency
between models and measurement is more than 4%
whereas for other horns it does not rise upon 2%. A
5 dB di�erence between measurement and models for
that �rst peak is also striking. There is actually a
larger di�erence in amplitude for the �rst resonance
of the trumpet horn too but it is only 2.4 dB.
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Table III. Di�erences on the resonance frequencies be-
tween TMM models and measurement for the long cone

Resonance Measurement Plane Spherical

1st Fr=230.80 Hz -3.73% -4.18%

2nd Fr=504.08 Hz -0.85% -1.37%

3rd Fr=801.58 Hz 0.37% -0.17%

4th Fr=1104.50 Hz 1.13% 0.53%

5th Fr=1406.60 Hz 1.40% 0.77%

6th Fr=1715.85 Hz 0.97% 0.32%

7th Fr=2026.98 Hz 0.61% 0%

8th Fr=2335.69 Hz 0.46% -0.08%

9th Fr=2647.14 Hz 0.39% -0.09%

10th Fr=2956.23 Hz 0.41% 0.01%

11th Fr=3267.07 Hz 0.40% 0.07%

Except for the �rst two resonances that pose a
problem, the spherical TMM model gives frequencies
closer to the measurement. Nevertheless, at high fre-
quency the plane TMM approximates better the am-
plitudes. Indeed, it seems that the impedance break
at the end of the cone is more important in reality
that what is supposed by the spherical model of radi-
ation. Furthermore, the radiation of a pulsating por-
tion of sphere supposes the presence of a spherical
�ange which could in�uence the results, but this is
not discussed here.

Finally, even if a cone seems to be the simplest case
to study, it is the one that raises the most questions.

7. Conclusion

This article shows that a simple and fast method
as the TMM can lead to quite accurate results for
the trumpet and trombone horns studied. As well as
measurements, this method is also compared to two
other computation methods. That con�rms the va-
lidity of the TMM which gives results of the same
order of magnitude than these other methods. It is
planned to carry on with the horn benchmark test
and to extend it to methods of Finite Element (FEM)
and Finite-Di�erence Time-Domain (FDTD). Results
obtained with the TMM are promising for musical
instruments crafstmanship as this method does not
require a strong computing power (any craftsman
should be able to use the designed software with his
own personal computer) and calculations are fast. It
is a signi�cant alternative to the plane wave approxi-
mation currently used.

In spite of these convincing results, some questions
still remain, especially when looking at the measure-
ment of a cone.
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