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ABSTRACT 

A new mathematical model for the fundamental mode of a propa­

gating Gaussian beam is presented. The model is two-fold, consisting 

of a mathematical expression and a corresponding geometrical repre­

sentation which interprets the expression in the light of geo­

metrical optics. The mathematical description arises from the (0,0) 

order of a new family of exact, closed-form solutions to the scalar 

Helmholtz equation. The family consists of nonseparable functions in 

the oblate spheroidal coordinate system and can easily be transformed 

to a different set of solutions in the prolate spheroidal coordinate 

system, where the (0,0) order is a spherical wave. This transforma­

tion consists of two substitutions in the coordinate system parameters 

and represents a more general method of obtaining a Gaussian beam from 

a spherical wave than assuming a complex point source on axis. 

Further, each higher-order member of the family of solutions possesses 

an amplitude consisting of a finite number of higher-order terms with 

a zero-order term that is Gaussian. 

The geometrical interpretation employs the skew-line generator 

of a hyperboloid of one sheet as a ray-like element on a contour of 

constant amplitude in the Gaussian beam. The geometrical character­

istics of the skew line and the consequences of treating it as a ray 

are explored in depth. The skew line is ultimately used to build a 

nonorthogonal coordinate system which allows straight-line propa­

gation of a Gaussian beam in three-dimensional space. 
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Highlights of the research into other methods used to model a 

propagating Gaussian beam--such as complex rays, complex point sources 

and complex argument functions--are reviewed and compared with this 

work. 



CHAPTER 1 

INTRODUCTION 

12 

Amplification of electromagnetic radiation by stimulated 

emission at optical or near optical wavelengths was proposed and demon­

strated around 1960 by Schawlow and Townes [1958J, Maiman [1960J, and 

Javan, Bennett and Herriott [196lJ. This amplifier or "laser", an 

acronym for "light amplification by stimulated emission of radiation", 

was an optical resonator consisting of two mirrors enclosing a gain 

medium. In an optical resonator, the mirrors reflect energy back and 

forth through the gain medium building up large field intensities at 

specified or resonance frequencies until a steady-state oscillation 

condition is reached. The resonator also acts as a spatial and fre­

quency filter. Fields with certain prescribed spatial variation and 

frequency will experience a large loss of energy on each round-trip, 

guaranteeing that low-loss modes will predominate in the steady-state 

condition. 

Following the development of the laser, other researchers, 

such as Fox and Li [196lJ, Boyd and Gordon [196lJ, Boyd and Kogelnik 

[1962J, and Kogelnik and Li [1966J, constructed mathematical expres­

sions to describe and predict the behavior of the optical radiation 

generated by these devices. Their work, and that of others since 

them, concentrated on characterizing the fields or modes which 



predominate after the laser oscillation has reached a steady-state. 

Furthermore, these fields have generally been expressed as solutions 

to the scalar Helmholtz or wave equation. These steady-state, low~ 

loss modes will propagate beyond the resonator into a medium or opti­

cal system where a model of their behavior is fundamental to under­

standing and predicting their interaction with the medium or optical 

system. 

A mode of a laser resonator is a wave function that repro­

duces itself in shape, amplitude and phase after each roundtrip. Fox 

and Li [1961] expressed this requirement as an integral equation in 

which the field or wave function across one mirror differs from the 

field across the opposite mirror by only a complex constant. This 

quantity determines the energy loss and phase shift the field experi­

ences per round trip. The wave function describes the spatial varia­

tion of the field in three dimensions; that is, the modes are func­

tions of the transverse coordinates at a specified position along the 

resonator. 

The mathematical expression used most frequently to represent 

the modes of a laser is the one introduced by Kogelnik and Li [1966]. 

In this representation, the fundamental mode of the beam consists of 

the product of an exponential phase term that is constant over the 

surface of a parabola, a Gaussian amplitude distribution, an 

additional amplitude modulation term that describes the beam's loss of 

energy as it traverses the resonator and an additional phase term that 

helps determine the resonant frequency. They expressed the 

13 



higher-order modes as the product of Hermite polynomials times this 

fundamental for resonators with rectangular symmetry, and they used 

Laguerre polynomials for resonators with circular cylindrical 

symmetry. 

14 

Koge1nik and Li began their derivation for both the Hermite­

Gaussian and Laguerre-Gaussian polynomials by postulating solutions to 

the scalar wave equation. This required the introduction of two 

approximations. First, the solutions were assumed to vary slowly in 

the direction of propagation (z) such that the second derivative with 

respect to z was dropped from the differential equation. Second, the 

solutions were assumed to be valid in only a very limited region near 

the optic axis, the paraxial region. This is the reason the phase 

contours are rigorously parabolic rather than spherical; a parabola is 

a first-order approximation to a sphere and is equivalent to a sphere 

within the paraxial region. With few exceptions, the overwhelming 

majority of authors in this area of research also employed these two 

approximations in developing mathematical expressions for the modes 

generated by a laser resonator. 

Depictions of the fundamental mode of a propagating Gaussian 

beam have not been limited to mathematical descriptions of the wave 

function but have also included geometrical interpretations of these 

wave functions. The reasons for a geometrical model are two-fold: 

first, to provide some physical insight into the actual wave phenomena 

and second, to predict the first-order properties of a Gaussian beam 



as it propagates through a medium or an optical system. These first­

order properties include waist dimensions and locations, wavefront 

radii and waist sizes at lenses, in pupil planes, and in image 

planes. To a large extent, the geometrical model of a Gaussian beam 

has been based on the traditional Kogelnik and Li mathematical expres­

sion. This description consists of a spherical wavefront, whose 

center varies in a nonlinear fashion along the axis, and contours of 

constant amplitude that are represented as hyperboloids of revolution 

of one sheet. Various methods have been proposed to trace the trans­

formation of the beam size and wavefront curvature as given by this 

model through an optical system. 

Deschamps and Mast (1964] observed that the transformation of 

the diameter and wavefront curvature of Gaussian beams through a 

sequence of lenses is equivalent to an impedance transformation 

through a reciprocal two-port network. In this case, refraction by a 

lens and transfer through sections of free space are analogous to 

parallel and series reactances, respectively. Equating.9aussian beam 

parameters to electrical impedance, a complex quantity, carried 

through to the complex beam parameter q of Kogelnik and Li (1966] as 

well as to the Gaussian Beam Chart introduced by Collins (1964] and 

expanded on by Li (1964]. The chart consists of two orthogonal fami­

lies of circles and is similar. to the Smith Chart used for calculating 

the characteristics of electromagnetic fielda along a transmission 

line. Deschamps and Mast also outlined a technique for calculating 

the first-order properties of a Gaussian beam by tracing the lateral 

15 
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foci of the amplitude hyperbola. This technique was later formalized 

by Laures [1967]. The transformation of the beam diameter and wave­

front curvature can also be expressed in terms of the elements of the 

ray matrix relating ray positions and slopes at the input and output 

planes of a system. Known as the ABCD law for transforming a Gaussian 

beam, this method was introduced by Kogelnik [1965] and remains quite 

popular. Another method for tracing Gaussian beam properties in an 

optical system, proposed by Steier [1966], consisted of applying geo­

metrical optics to the amplitude hyperbola as an envelope of rays. In 

this equivalent-ray-packet technique, the envelope gives the Gaussian 

beam spot size, and the curves perpendicular to the average ray slope 

provide the Gaussian beam phase fronts. Finally, Arnaud [1969] intro­

duced the very useful concept of a compex ray to represent Gaussian 

beams. He presented a very convenient beam tracing method that 

portrayed a complex ray as two real rays that can be traced through an 

optical system by ordinary ray trace methods. The theory behind this 

method will be examined in Chapter 6. Herloski, Marshall, and Antos 

[1983] utilized this method in a conventional optical design program. 

The mathematical model for a propagating Gaussian beam, which 

will be presented here, will utilize two simplifications found in all 

of the previous work on this subject. First, we shall confine the 

discussion to solutions of the scalar wave equation and second, we 

will concentrate on the fields produced by a resonator after it has 

reached a ste~dy state. Since it is only these steady-state fields 

that propagate beyond the resonator, this latter restriction is 
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trivial. Basically, we do not concern ourselves with the resonator at 

all, only with the fields it generates. Limiting this presentation to 

the domain of scalar theory is a more serious restriction. It means 

that electromagnetic radiation will be treated as a scalar phenomenon; 

tl",,;: is, that only the scalar amplitude of one transverse component of 

the electric or magnetic field will be considered. It is assumed that 

all other components can be treated independently in the same fash-

ion. This approach ignores the fact that the electric and magnetic 

fields are coupled through Maxwell's equations and cannot be treated 

independently. In general, scalar theory yields very accurate results 

if the diffracting aperture (in this case, the resonator mirror) is 

large compared to the wavelength and if the fields of interest are not 

studied too close to the aperture. Both of these conditions will be 

met here but scalar theory runs into yet another difficulty when used 

to describe beams with a Gaussian amplitude distribution. Under the 

presumption of scalar theory, we assume that the electric field is 

polarized in the same direction everywhere. However, according to 

Maxwell's equations, the field must have a zero divergence in a 

charge-free region. As a result, there can be no spatial modulation 

of the field in its direction of polarization. In other words, as 

Mukunda, Simon and Sudarshan [1984J and Lax, Louisell and McKnight 

[1975J have shown, the spatial modulation of the field affects its 

polarization. Therefore, a scalar field with a Gaussian amplitude 

distribution cannot exist, let alone propagate. Nevertheless, we will 



carryon with the pleasant fiction that such a beam does indeed exist 

as well as propagates since the development of a scalar theory is the 

best and most methodical starting point for developing Gaussian 

amplitude solutions to the vector wave equation. 

18 

Before beginning this development of a new mathematical model, 

we shall take an in-depth look at the historical developments that led 

up to Kogelnik and Li's traditional Gaussian beam model--both the 

mathematical expression and the geometrical interpretation. We shall 

examine the approximations, apart from the assumption of scalar 

theory, that went into their description. We shall also discuss the 

contradictions their geometrical model presents in the light of geo­

metrical optics. 

Chapter 3 will begin the derivation of the new mathematical 

model. This model will ultimately contain two parts--a mathematical 

expression for the fundamental mode of a propagating Gaussian beam and 

a geometrical interpretation of that expression. The wave function 

presented here is the zero-order mode of an entire family of exact, 

closed-form solutions to the scalar wave equation. Chapter 3 will 

concentrate on the development of this zero-order mode and compare it, 

term by term, to the traditional beam description of Kogelnik and Li. 

In Chapter 5 we shall extend the derivation to all of the higher-order 

terms of the family. Along the way, we shall point out a very simple 

but elegant means of obtaining Gaussian beam harmonics from spherical 

waves and spherical harmonics. 
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In Chapter 4 we present the geometrical interpretation of this 

new wave function. The model is couched in the oblate spheroidal 

coordinate system because of the ease with which wavefronts and 

amplitude contours can be identified with the coordinate surfaces. 

The oblate spheroidal coordinate system consists of a family of con­

focal ellipses and hyperbolas rotated about the semi-minor axis of the 

ellipse. The wavefront of the Gaussian beam is identified with a 

section of this oblate ellipsoid while the hyperboloid of revolution 

of one sheet becomes a contour of constant amplitude. Further, we use 

the skew-line generator of this hyperboloid as a ray-like element to 

facilitate the geometrical interpretation of the new mathematical 

expression. Finally, we shall use this skew line to build a non­

orthogonal coordinate system in which to study straight-line propa­

gation of Gaussian beams. The usefulness of this nonorthogonal 

coordinate system cannot be found in the design of optical systems 

using Gaussian beams. Rather, it will provide the necessary formalism 

with which to study Gaussian beam propagation in inhomogeneous or 

stratified media as well as Gaussian solutions to the vector wave 

equation. 

The work presented here bears some similarity to recent work 

on complex point sources, complex rays and complex-argument solutions 

to the scalar wave equation. This previous work has much appeal in 

its ability to apply the power and simplicity of spherical waves to 

the Gaussian beam problem. We shall therefore devote Chapter 6 to a 



comparison between previous research and the results given here. 

Finally, we shall look at some ideas for future research in 

Chapter 7. The conclusions we shall reach in this paper are notable 

as much for the answers they provide as the questions they pose. 

20 
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CHAPTER 2 

HISTORICAL DEVELOPMENT OF A MATHEMATICAL MODEL 

FOR GAUSSIAN BEAMS 

The traditional description of the fundamental mode of a 

Gaussian beam derives from the resonator mode analysis of Fox and Li 

[19611. This analysis was a numerical calculation of the scalar field 

across the mirrors of a Fabry-Perot resonant cavity where an initially 

launched plane wave is reflected back and forth many times between the 

mirrors. Specifically, they used the Rayleigh-Sommerfeld diffraction 

integral to compute the Fresnel field up at the mirror p due to the 

illuminated aperture A of the other mirror a. 

ik ifr +ikR 
up a 4" ~ua ~ (1 + cosO) dS. (2.1) 

In this formulation, ua is the field distribution across the mirror a, 

k is the propagation constant of the medium, R is the distance from a 

point on the mirror a to the observation point, and 0 is the angle 

that R makes 'with the unit normal to mirror a. This approximation 

assumes that the dimensions of the mirror are large in terms of wave­

length (R »~) and that the field is very nearly transverse electro-

magnetic and uniformly polarized in one direction. 
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A plane-wave disturbance is launched at one of the mirrors and 

allowed to traverse the resonator many times. After many tran-

sits, a steady state is reached where the fields across both mirrors 

are identical except for a complex constant that is independent of 

position. The diffraction integral becomes: 

If +ikR ik 
v ='Y v T (l + cosO) 4 ds, 

A 
(2.2) 

where v is the field distribution across both mirrors and can be 

regarded as a normal mode of the cavity. The constant 'Y specifies the 

attenuation and propagation constant associated with this normal mode • 

. The authors used the method of successive approximations to 

solve the integral Equation (2.2) numerically for three resonator 

configurations I (1) rectangular plane mirrors, (2) circular plane 

mirrors, and (3) confocal spherical or paraboloidal mirrors. In the 

case of the confocal spherical mirrors, the calculation indicated that 

the TEMoo mode possessed a Gaussian amplitude distribution and a phase 

distribution that was coincident with the spherical mirrors. 

Concurrently, Boyd and Gordon (1961J were seeking an 

analytical solution for the mode patterns of a resonator with sym-

metrically placed concave spherical mirrors. They solved the problem 

initially for the specific case of a confocal resonator and then 

generalized their results for mirrors of identical radius but spaced 

a distance L apart. Here again, the normal modes or 
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eigenfunctions of the confocal resonator, are obtained by requiring 

that the field distribution over one mirror reproduce itself within a 

constant over the opposite mirror. The resulting integral equation is 

given by Equation (2.2) where Boyd and Gordon assume the field 

distribution v to be a product of functions separable in x and y. The 

authors suppose further a square reflector of dimension 2a which is 

small compared to the mirror spacing L, and thus 8 is very nearly 

zero. Figure 2.1 illustrates a confocal resonator with the transverse 

scale enlarged to show detail. Equation (2.2) becomes 

+a ik +ikR 
f (x)g (y) a 1rf--2 Ref (x')g (y')dx'dy' m n 'J. 7T m n 

(2.3) 
-a 

To evaluate the distance R in the exponential phase term, they 

used the binomial expansion. The expression for R is given by 

R a" L2+(x-x')2 + (y_y')2 

or approximately, 

2 2 (x-x') + (y-y) -

2L2 

2 
(x-x,)2 + (y_y') +} 

BL4 

(2.4) 

• (2.5) 

When L3~ »a4 , the third term of this expansion is much less than one 

and can be ignored. Parabolic wavelets now replace the Huygens 
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Figure 2.1 Confocal resonator geometry 



(spherical) wavelets implicit in Equation (2.2). We can rewrite 

Equation (2.3) in terms of dimensionless variables where 

and 

2 

2nL~ 

F (X) ~ f (x) 
m m 

x = x Vc;' y a y -Vc 
a a 

A 
G (y) = g (y) 

n n 

Substituting these values into Equation (2.3) yields 

+vc 
f 

-VC 
F (X')eiXX'dX' 

m 

(2.6) 

(2.7) 

(2.8) 

Thus, the field distribution across one mirror is proportional 

to the finite Fourier Transform of the distribution across the other. 

This is not a surprising result. Each mirror is a focusing element 

and imposes a quadratic phase factor on the incident field. Likewise, 

the Fresnel diffraction integral contains a quadratic phase factor due 

to each point on the diffracted wavefield propagating and expanding 

with distance z. Since the distance between the mirrors is exactly 

their radius, these phase factors cancel. 

Slepian and Pollack [1961] considered solutions to the finite 

Fourier Transform, 

25 



26 

(2.9) 

They showed solutions to be 

(2.10) 

2c DL(l) X .. -;- i K (C, 1), m .. 0, 1, 2, 
m " om 

(2.11) 

where Som(c,~) and Rom(c,l) are, respectively, the angular and radial 

wave functions in prolate spheroidal coordinates as defined by Flammer 

[1957J. Further, ~ .. x/a for Fm(X) and ~ .. y/a for Gn(Y). In the 

small angle approximation, that is ~2 ~ 1, Flammer shows that 

(2.12) 

The mode shape is then approximately a Gaussian times a Hermite poly-

nomial Hm(X). The first three modes are then 



1. c71 2 
2 1I'x 
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2 = n- - L). 
1I'x'\jXL e (2.13) 

2 

( 

2 1I'X 
4 1I'X - 1) - L). 

= ---rx- e 

In two dimensions, the eigenfunction solutions to Equa-

tion (2.8), and therefore the resonator mode patterns, are the 

spheroidal wave functions, Som(c, x/a) and Som(c, y/a). These modes 

can be expressed in terms of the Hermite-Gaussian polynomialsl 

H (X)H (y) m n 
(2.14) 

These eigenfunction solutions exist on the reflecting surfaces. Since 

these solutions are real, the mirrors are surfaces of constant phase. 

This result agrees with the numerical calculations of Fox and Li. 

Boyd and Gordon went on to expand their results for symmetri-

cally located surfaces of constant phase inside and outside the 

resonator. Boyd and Kogelnik [1962] went further, defining mode 

patterns, beam shapes and sizes, and resonance conditions for 



28 
arbitrary resonator configurations, as well as identifying high-loss 

(unstable) and low-loss (stable) geometries. Regardless of the 

specifics, each analysis produced consistent conclusions for the 

fundamental mode pattern of a resonator: a Gaussian amplitude 

distribution across surfaces of constant phase that are approximately 

spherical. Expressed mathematically, the wave function at any point 

is given approximately by: 

exp (- x
2+i ik (x

2
+ll ) -2 2R w s 

(2.15) 

exp (-
ik(x2+l) [ 1 

- 2~w, 2] ) 2 R 

where ws ' is the "spot size", or the distance from the axis at which 

the wave amplitude is lie times the on-axis value, as illustrated in 

Figure 2.2, and R is the radius of curvature of the phase front. The 

form of the function in brackets remains the same for all surfaces, 

but Rand Ws vary in such a way that a surface of constant amplitude 

describes a hyperboloid of one sheet about the z axis. A Gaussian 

beam cross section is illustrated in Figure 2.3. 

Kogelnik and Li [1966] later developed a mathematical deriva-

tion to explain this behavior. The scalar wave equation can be 

written as 
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Figure 2.2 Gaussian amplitude distribution. 
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(2.16) 

where the field distribution u, traveling in the z direction, is 

u a¢(x,y,z) exp (-ikz) (2.17) 

Kogelnik and Li postulated that the complex function ¢has a form 

similar to Equation (2.15), that is, a curved wavefront and a 

non-uniform intensity distribution along with complex phase shifts 

associated with propagation. They further assumed that ¢ varies so 

slowly with z that its second derivative o2¢/oz2 can be neglected. 

Therefore insertion of Equation (2.17) into (2.16) yields 

o¢ 
2ik oz a 0 (2.18) 

A solution to Equation (2.18) possessing the aforementioned 

properties can be written explicitly as 

(2.19) 
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The parameter p(z) represents the complex phase shift associated with 

beam propagation and q(z) is a complex beam parameter as identified by 

the function in brackets in Equation (2.15). Specifically, 

1 __ a 

q(z) 
1 

R(z) -
2i 

2 ' kw(z) 
(2.20) 

where R(z) is the radius of wavefront curvature and w(z) is the spot 

size. Now we shall derive the explicit dependence upon z of both p(z) 

and q(z). 

After insertion of Equation (2.19) into (2.18) and comparing 

terms of equal powers of x2 + y2, one obtains the relations 

and 

ap(z) __ a 

dZ 

dq(Z) = 
dZ 

-i 
q(z) 

1 

(2.21) 

(2.22) 

Equation (2.22) indicates a linear rate of change of the complex beam 

parameter with respect to z, which can be written as 

(2.23) 
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where the beam parameter in an output plane q2 is related to the 

parameter in an input plane ql by the separation z between the planes. 

Using expressions (2.20) and (2.23), one can derive character-

istic equations for R(z) and w(z). The Gaussian beam contracts to a 

minimum beam diameter, 2wo ' at a "beam waist" where the phase front is 

a plane. At this point, R(z)-oo and 

1 
q (z) 

o 

q (z) '" 
o 

= 0 

ikw 2 
o 2 

2i 
kw 2 

o 

At a distance z from the plane of the waist, the equation for the 

complex beam parameter becomes 

I 1 
q (z) III -q-("";z;"")-+-z 

o 

I 111-- _ 
R(z) 

Equating the real and imaginary terms yields 

2i 
2 kw(z) 

2z ) 2] 
kw 2 

o 

and 

( 

kw 2)2 
R(z) '" z I + 2~ 

(2.24) 

(2.25) 

(2.26) 

(2.27) 
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The beam contour w(z) is a hyperbola with asymptotes inclined to the 

axis at the far field diffraction angle for the fundamental mode, 

/j a 2 
kw o 

(2.28) 

Next, we examine the behavior of P(z), the complex phase shift 

associated with propagation of the beam, with respect to z. Using the 

plane of the waist as the input plane and inserting (2.23) into (2.21) 

yields 

p(z) 
z 

a i --a 
q(z) 

i 
2 z+ikw /2 

o 

Integration of (2.29) generates an expression for P(z), 

Substituting (2.30) into (2.19) produces the result 

(2.29) 

(2.30) 
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w 
~(x,y,z) '" w(~) i'll» 2q(z) 

e e 
(2.31) 

It now becomes apparent that the real part of P(z) represents a phase 

difference ~ between a Gaussian beam wavefront and a plane wave, while 

the imaginary part produces an amplitude factor wo/w(z), giving the 

expected on-axis amplitude decrease due to expansion of the beam. 

With these results, the fundamental field distribution u can be written 

u(x,y,z) '" 

(2.32) 

where 

(2.33) 

Figure 2.4 illustrates the field just described. 

Finally, many authors (for example Harris, Tavener and 

Mitchell [1969J and Gaskill [1978J) identify a further beam character-

istic called the Rayleigh range. This is defined to be the distance 

from the waist, zo' at which the beam width has increased by a factor 

of Y2 and the radius of curvature has a magnitude of 2zo' Therefore, 

at z = zo' we can write the beam width and radius as 
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(2.34) 

where 

kw 2 
a ___ 0_ 

Zo 2 (2.35) 

It is a simple matter to show that the characteristic function for the 

radius of curvature R(z) has a minimum at the Rayleigh range. 

Approximations, Interpretations and Limitations 

Equation (2.32) describes a scalar field possessing a Gaussian 

amplitude distribution, a paraboloidal wavefront and a phase draw-up 

or slip in the position of the phase front as the beam propagates. 

While this may be far from the ideal behavior of an electromagnetic 

wave, it should be kept in mind that all of the analyses hitherto used 

to derive a mathematical description of a Gaussian beam use the 

Fresnel approximations to part of the Rayleigh-Sommerfeld diffraction 

kernel. These approximations are generally employed in diffraction 

problems to make the integral computations and mathematical 

manipulations easier. Specifically, they include the paraxial 

approximation, a truncation of the binomial expansion and the usual 

scalar diffraction approximation where aperture dimensions are large 

compared to wavelength. 



1/e field 

L <P/i< 
Spherical phase f~nf/ 

Figure 2.4 Contour of the fundamental mode of a 
Gaussian beam 
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The first two approximations limit the validity of any solu-

tion to a small region near the axis. In this area, sines and 

tangents of angles are very nearly indistinguishable from each other 

as well as from the angles themselves. This leads to certain ambigui-

ties in the classical beam description which will be discussed in 

Chapter 3. In addition, truncation of the binomial expansion further 

restricts the functional description of the beam shape by replacing 

spheres with parabolas. The first-order approximation to a sphere is 

a parabola, and therefore the mathematical model as written in Equa-

tion (2.32) cannot differentiate between spheres and parabolas nor, 

for that matter, between spheres and a family of ellipsoids. 

In the Rayleigh-Sommerfeld diffraction formula, the field 

disturbance at an output plane is found by convolving the disturbance 

at an input plane or aperture with the point spread function. This 

function is the normal derivative of a spherical wave and has the form I 

" n • "" [ IJ (n • r) k i - kr 
ikr 

e 
kr 

which is an elementary wavelet generated by an oscillating quad-

rupole. The Rayleigh-Sommerfeld diffraction integral expands the 

field across an aperture into a summation of elementary wavelets 

generated by quadrupoles. 

(2.36) 

At this point, it is usually assumed that the distance between 

the output plane and the aperture is much greater than one wavelength, 

r »)., and the spread function becomes, 



39 

" "[ 1J (n • r)k i - kr ikr (" e """ n • -_ ..... 
kr 

(2.37) 

The resulting function has the form of a spherical wave with a 900 

phase shift. By making the above assumption, we approximate the 

derivative of a function with the function itself. Further, we sub-

stitute an oscillating dipole, which generates spherical waves, for 

the quadrupole as the basis source in the diffraction integral. Kuper 

[1983] has shown that the quadrupole wavelet, not the dipole, reduces 

to a delta function in the plane of the aperture and therefore re-

produces the assumed boundary conditions. It has also been shown by 

Shack [1983] that making this approximation eliminates some of the 

propagating terms, as well as the evanescent ones, from the diffracted 

wavefie1d. Clearly, the approximations inherent in the diffraction 

analysis as it has been performed historically restrict how precisely 

the classical model of a Gaussian beam predicts its propagation. 

At best, then, the current description can be termed an 

approximation to the electromagnetic wave phenomena of diffraction. 

Therefore, we can explore how well the model agrees with another 

approximation, that of geometrical optics, as a first-order approach 

to predicting its characteristics upon propagation as well as the 

beam's behavior in an optical system. Doing so, however, reveals 

further inconsistencies in the beam description. One can infer that 

equal amplitude points on successive wavefronts lie along paths or 

trajectories that coincide with the direction of radiant energy. 



Geometrical optics stipulates that in a homogeneous medium this 

direction of radiant energy is a straight line, since by symmetry, the 

path cannot be bent in any preferred direction, there being none. 

Unfortunately, this path is a hyperboloid of one sheet as a contour of 

constant amplitude is defined by the traditional model. Geometrical 

optics also maintains that a phase front will propagate along 

orthogonal tr~jectories. Again, the current model falls short since 

neither a sphere nor a parabola, as the wavefront is described, 

constitutes an orthogonal function to a hyperboloid. A set of 

confocal ellipses forms the orthogonal family to such a figure. For a 

hyperboloid of one sheet rotated about the z axis with respect to foci 

symmetrically located at p = ±d, the perpendicular family will be 

oblate ellipsoids with foci also at p = ±d. An oblate ellipsoid is 

an ellipse rotated about its semi-minor axis, in this case the z axis. 

In addition to the contradictions posed by the nonorthogonal 

wavefronts and curved trajectories, the center of curvature of the 

expanding wavefronts displays some odd properties for a geometrical 

model. The position of the center of curvature, that is the loca­

tion of the point source, varies in a nonlinear fashion along the axis 

with the asymptotic wavefront curvature centered at the waist. Like­

wise the radius of curvature changes nonlinearly, decreasing to a 

minimum at a distance equal to the Rayleigh range from the waist and 

then increasing again. Indeed, this behavior is consistent with the 
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radius of vertex curvature for an oblate ellipsoid with foci equal to 

the Rayleigh range. Coupled with the aforementioned peculiarities of 

the present model, this fact lends credence to the theory of an 

ellipsoidal wavefront for a Gaussian beam. 

Historical References to Ellipsoidal Wavefronts 

Deschamps [1971] suggested a family of ellipses confocal with 

the amplitude hyperbola as the exact expression for the Gaussian beam 

wavefront. He did so in a paper relating the field of a Gaussian beam 

to a spherical wave having a complex source. Arnaud [1969] originally 

proposed complex rays resulting from a point source whose position is 

complex as a means of describing the propagation of Gaussian beams. 

Since then, Arnaud [1985] and others (Shin and Felsen [1977], Keller 

and Streifer [1971]) have developed an extensive theory pertaining to 

the use of complex-point-source rays to describe a geometrical optics 

model for a propagating Gaussian beam. Indeed, this idea has received 

so much attention in the literature of the last ten years that its 

relationship to this work will be discussed in Chapter 6. 

Vainshtein [1964] was the first to consider a wave function 

having an oblate ellipsoidal wavefront in a resonator. After the 

manner of Boyd and Gordon, he was studying the electromagnetic 

oscillations within an open resonator formed by identical circular or 
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rectangular spherical mirrors. He obtained formulas for the oscilla­

tion frequency and field distribution, interpreting each of the 

oscillations as a set of rays alternately reflected by the mirrors and 

restricted by a caustic surface. By expressing the wavefront as an 

ellipse, the formulas for the field distribution within the resonator 

are general enough to allow for changes 1n mirror curvature. 

Vainshtein began with plane mirrors and gradually increased the 

curvature, leaving their dimensions and separation distance constant, 

while studying the effects of the change on the caustic surfaces and 

on the radiative losses within the resonator. Increasing the mirror 

curvature from a plane matches the variation of foci separation in an 

ellipse from infinity. In this situation, a concentric resonator 

results when the foci separation equals zero. Vainshtein was using 

the oblate ellipse as a general spheroid for his purposes and was not 

investigating an elliptical wavefront model. 

Ito [1973] extends this idea further to discuss Gaussian beams 

in the context of ellipsoidal wave functions which include prolate and 

oblate spheroidal wave functions and elliptic cylinder functions. He 

suggests that since oblate spheroidal wave functions tend to the 

Laguerre-Gaussian polynomials in the short wavelength limit, then 

ellipsoidal waves might tend to a more general form of a class of 

beams in the short wavelength limit, including the Gaussian beam as a 

special case. Like Vainshtein, Ito does not investigate the signifi­

cance of an elliptical wavefront but uses the ellipsoidal coordinates 
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as a more general system in which to express a broad class of beams 

emanating from dipoles and quadrupoles as well as aggregates of these 

and including beams with a Gaussian amplitude distribution as a 

special case. 

Summary 

We have seen how the mathematical model currently used to 

describe a beam with a Gaussian amplitude distribution developed. In 

particular, we have discussed the approximations peculiar to the 

diffraction analysis and the limitations and contradictions in the 

model when it is interpreted in the light of geometrical optics. In 

the next chapter, we begin the development of a new scalar model, 

devoid of approximations, which consists of both a new mathematical 

expression for the fundamental mode of a Gaussian beam and a new 

geometrical interpretation of this formulation expressed in the oblate 

spheroidal coordinate system. 
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CHAPTER 3 

AN EXACT ZERO-ORDER SOLUTION TO THE SCALAR WAVE 

EQUATION IN OBLATE SPHEROIDAL COORDINATES 

44 

In the past, mathematical descriptions of the fundamental mode 

of a propagating Gaussian beam have been expressed in a variety of co­

ordinate systems. The expression introduced by Kogelnik and Li [1966] 

and used most frequently utilizes the Cartesian coordinate system to 

depict beams with rotational symmetry. As discussed at the end of the 

previous chapter, other authors have used the oblate spheroidal co­

coordinate system because of the simplicity of modeling a contour of 

constant amplitude in the beam as a hyperboloid of one sheet, which is 

one of the oblate spheroidal coordinate surfaces. It is also possi­

ble to obtain exact solutions to the scalar Helmholtz equation in this 

coordinate system, as shown by Einziger and Raz [1987]. The solutions 

to the wave equation that will be developed here are similar to the 

results of Einziger and Raz, but the physical interpretations are 

radically different and the results include an entire family of higher­

order solutions which will be presented in Chapter 5. 

Most methods of determining solutions to the scalar Helmholtz 

equation begin by assuming a general solution that is separable in the 

coordinate system of choice. In the prolate and oblate spheroidal 

coordinate systems in particular, the definitive work on solutions to 

the wave equation is contained in Carson Flammer's Spheroidal Wave 



Functions {l9571. The solutions presented in this chapter and in 

Chapter 5, although expressed in these coordinate systems, are not 

separable in either system. While this does represent an additional 

level of complexity, the resultant solutions have analytic forms 

instead of an infinite series as for Flammer's separable solutions. 

Furthermore, Flammer's method of solving the wave equation requires 

different solutions for different values of the product kd, where k is 

the propagation constant of the medium and 2d is the focus spacing for 

the prolate or oblate spheroidal coordinates. In contrast, the exact 

solutions presented here are valid regardless of the value of the kd 

product. 

Two families of closed-form, nonseparable solutions to the 

scalar Helmholtz equation are presented here: one in the prolate 

spheroidal coordinate system and the other in the oblate spheroidal 

coordinate system. The families are related by a "transformation", 

introduced by Flammer, which consists of two parameter substitutions. 

The first is to substitute ±i~ in the oblate spheroidal system, for 

the prolate spheroidal coordinate ~; the second is the replacement of 

ikd in the prolate spheroidal system with ±kd in the oblate spheroidal 

one. Note that this differs from a simple coordinate transformation; 

furthermore, we perform the substitution or transmutation on both the 

Helmholtz operator and the wave function. This generates an entirely 

new and different family of solutions to the wave equation in the 

oblate spheroidal coordinate system from a family of solutions in the 

prolate spheroidal system. Both families are exact solutions to the 

wave equation, but they are radically different in form. 
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Specifically, we transmute a spherical wave with a real point source 

on axis into a Gaussian beam. 

Spheroidal Coordinate Systems 

46 

The prolate spheroidal coordinate system is formed by rotating 

a system of confocal ellipses and hyperbolas about the major axis of 

the ellipse. The axis of rotation is the z axis, and the foci occur 

on this axis, symmetrically located about the origin with a spacing of 

2d. The prolate spheroidal coordinates, shown in Figure 3.1, are 

related to rectangular coordinates by a set of parametric equations 

given bYI 

x .. d sinh tL sinS cos¢ 

y .. d sinhtL sinS sin¢ , 

z m d coshtL cosS , 

where 0 ~ e E;;; 1T, 0 E;;; tL < 00, 0 ~ ¢ E;;; 2 

(3.1) 

(3.2) 

Following Flammer's notation, we let 1:." coshtL and TJ .. cos S 

The parametric equations then become 

x "" d (I:. 2 - 1)1/2 (1 - TJ 2)1/2 cos¢ 

y .. d (~2 - 1)1/2 (1 - TJ 2)1/2 sin¢ (3.3) 

z .. dl:.TJ , 

where -l~ TJ ~l, l~ ~<oo, OE;;; ¢<;21T (3.4) 



x,y 

"1=0 

d--.JIt 

Figure 3.1 Prolate spheroidal coordinate system 
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The surface ~ = constant > I is a prolate ellipsoid with a 

major axis of length 2d~ and a minor axis of length 2d sinh~. The 

degenerate surface ~ = I is a straight line along the z axis from 

z = - d to z = + d. The surface Inl= constant < I is a hyperboloid 

of revolution of two sheets whose asymptotes pass through the origin, 

inclined at an angle e = cos-In to the z axis. The degenerate 

surface I n I = I is that part of the z axis for which Iz I > d. 

Finally, the surface ¢ = constant is the azimuthal plane containing 

the z axis. 

The oblate spheroidal coordinate system, shown in Figure 3.2, 

is formed by rotating a similar system of mutually orthogonal ellipses 

and hyperbolas about the minor axis of the ellipse. Again, the z axis 

is the axis of rotation, but now the focus is a ring of radius d in 

the x-y plane. The parametric equations relating the oblate 

spheroidal coordinate system to Cartesian coordinates are 

x = d cosh~ sine cos¢ 

y = d cosh~ sine sin¢ , 

z = d sinh~ cose • 

with either 

o ~e ~ 17, 0 ~ ~ < 00, 0 ~ ¢ ~217 , 

or 

(3.5) 

(3.6a) 

(3.6b) 
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Figure 3.2 Oblate spheroidal coordinate system 
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In the oblate case, we let ; '" sinhJl and T) a cosO. The parametric 

equations then become 

x '" d (1 + ~2)1/2 (1 - T)2)1/2 cos¢ 

y '" d (1 + ;2)1/2 ( 1 - T) 2)1/2 sin¢ (3.7) 

z '" d~T] 

with either 

so 

-1 ~ T) ~ 1 ,0 ~ ~ < 00 , 0 ~ ¢ <; 217 (3.7a) 

or 

o ~ T) ~ 1 , -00 < t. < 00, 0 ~ ¢ <;; 217 • (3.7b) 

In the oblate system, the surface 1 ; 1 = constant >0 is an 

oblate ellipsoid with major axis of length 2d coshJl and minor axis of 

length 2d 1 sinhJlI. The surface; = 0 is a circular disk of radius d 

centered at the origin in the x-y plane. The surface IT) I"'" constant 

<1 is a hyperboloid of revolution of one sheet whose asymptotes pass 

through the origin inclined at an angle 8 = cos-IT) with the z axis. 

The degenerate surface T) = 1 is the z axis. The surface T) = 0 is the 

x-y plane except for the circular disk ; = O. Finally, the surface 

¢= constant is again the azimuthal plane containing the z axis. The 

angle ¢ is measured from the x-z plane. 



While it is tempting to think of the difference between the 

prolate and oblate systems as a simple rotation or flattening of the 

ellipsoids, such is not the case. As Figure 3.3 and Figure 3.4 

demonstrate, the foci in the prolate spheroidal system are two 

distinct points on the z axis, whereas the focus in the oblate system 

is a ring in a plane perpendicular to the z axis. Furthermore, the 

hyperboloids of revolution consist of two separate sheets in the 

prolate case but is a single, continuous sheet in the oblate. Both, 

however, are systems of orthogonal curvilinear coordinates, i.e., the 

tangent planes of the three surfaces passing through any point in 

space are mutually perpendicular. The confocal ellipses and hyper­

bolas for both the prolate and oblate systems can be defined in terms 

of the usual definitions of ellipses and hyperbolas. That is, an 

ellipse is the locus of a point P which moves such that the sum of its 

distances to the foci remains constant. Similarly, a hyperbola is the 

locus of P which moves such that the difference of its distances to 

the foci remains constant. In Figures 3.1 and 3.2, these distances 

are shown as r+ and r_. In the prolate case, these distances ere 

(3.8) 
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Figure 3.3 Three-dimensional view of prolate spheroidal 
coordinate system showing focal points 

z 
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x 

Figure 3.4 Three-dimensional view of oblate spheroidal 
coordinate systems showing focal ring 
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Substituting in the parametric equations given by Eq. (3.3) results in 

r+ ... del + cosh2~ cos20 + 2 cosh~ cosO + sinh2~ sin20)1/2 , (3.9) 

r_ ... del + cosh2~ cos2e - 2 cosh~ cosO + sinh2~ sin2e) 1/2 • 

By use of the trigonometric identities, 

cosh2~- sinh2~ ... 1, 

cos2e + sin2e = 1 

Equation (3.9) reduces to 

(3.l0a) 

(3.lOb) 

r+ c d[coshl/ + cose) '" d(t,+71) 

r_" d[cosh~ - cosO) .. d(E. -71) 

(3.11) 

The same procedure can be followed in the oblate spheroidal 

coordinate system, although, since the focus is a ring, r+ and r_ are 

drawn in the same azimuthal plane. Therefore, r+ and r_ are 

r+ .. [( p + d)2 + z2J1/2 , (3.12) 

r_ .. [( P - d)2 + z2) 1/2 , 

where p .. Jx2 + y2 and ¢ is assumed constant. Substituting in the 

parametric equations for p and z given by Equation (3.5) leads to 

r+ ... del + cosh2~ sin2e + 2cosh~ sinS + sinh2~ cos2e)1/2 

r_ ... del + cosh2~ sin2e - 2coshJl sinO + sinh2~ cos2e) 1/2 • 

Again, by using the trigonometric identities in Equation (3.10), 

Equation (3.13) becomes 

r+ .. d [cosh~ + sineJ 

r_ c d[cosh~ - sinS) 

(3.13) 

(3.14) 
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Expressed in terms of t, and 11, r+ and r_ are 

r+'" d ((1 +t,2)1/2 + (1 _112)1/2) 

r_ ... d ((1 + ~2)1/2 - (1 _112)1/2 ) 

(3.15) 

In both the prolate and oblate systems, the sum of r+ and r_ 

leads to a surface which is a function of ~ only--the ellipse. 

Likewise, the difference between r+ and r_ leads to a surface 

dependent on 11 alone--the hyperbola. In the prolate system these 

surfaces are given by 

r+ + r_ ... 2d~ 

r+ - r_ ... 2d11 

and in the oblate system they are expressed as 

Zero-Order Solutions to the Scalar Wave Equation 

The scalar wave equation 

(3.16a) 

(3.16b) 

(3.17 ) 
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is separable in eleven coordinate systems, including the prolate and 

oblate spheroidal coordinate systems. For an orthogonal coordinate 

system, the Laplacian is given by 

o!J 

+ (3.18) 

The factors hi are the metrical coefficients defined by 

dx2 + dy2 + dz2 a h12du12 + h22du22 + h32du32 (3.19) 

In the prolate spheroidal coordinate system, these coefficients are 

h .. 
11 (3.20) 

After substituting these factors in the expression for the Laplacian, 

Helmholtz's equation becomes 
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[;~ 
+ 02 + k2d2(~2 - 7]2)]1/Ia 0 

0¢2 

(3.21) 

As Flammer points out, it is possible to obtain Helmholtz's equation 

in oblate spheroidal coordinates from Equation (3.21) by making the 

transformation 

~p /s -+ ±i~O/S 

(3.22) 

ikdp/S -+±kdO/S 

from prolate to oblate coordinates respectively. The subscript (P/S) 

denotes prolate spheroidal coordinates and the subscript (O/S) denotes 

oblate spheroidal coordinates. 

The scalar wave equation in oblate spheroidal coordinates 

becomes 

[ aa£ 

+ ~2 + 7]2 £ + k2d2(~2 + 7] 2)] I/J a 0 

0¢2 

This result agrees, of course, with that obtained by 

substituting the metrical coefficients for the oblate spheroidal 

coordinate system into the expression for the Laplacian. For 

reference, these metrical coefficients are 

(3.23) 
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(3.24) 

A spherical wave can be represented by a zero-order spherical 

Hankel function of the first kind, which is a well-known solution to 

the scalar Helmholtz equation. Let 

.r, -ikd 
'YP/ S I: e (3.25) 

where r+ is the radial distance from the focal point z c -d in the 

prolate spheroidal coordinate system as given by Equation (3.11). In 

addition, we have added a constant factor, e-1kd , to the wave 

function. The purpose for this will become clear, but for now it does 

not affect the nature of tb p/ s as an exact solution to the wave equa­

tion. Finally, we can interpret Equation (3.25) as a spherical wave 

expanding outward from the focal point at z c -d, expressed in prolate 

spheroidal coordinates. 

Let us now apply the transformation of Equation (3.22) to both 

the Helmholtz operator V2 + k2 and the wave functiontbp/ s _ Equa­

tion (3.25) becomes 
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ikd(71+~) -kd kd( 71 +i~) -ikd e 
e ..... ..:;;e_--..;e~ ___ _ (3.26) 
ikd(71+s) kd(71 + is) 

In addition, because of the transformation of the operator 

(V 2 + k2), the scalar wave equation is that given by Equation (3.23) 

for the oblate spheroidal coordinate system. We have, in effect then, 

transformed the entire Helmholtz equation, operator and wave 

function,from the prolate to the oblate spheroidal coordinate system. 

In other words 

(V
2 

+ k
2

) Pis "'(V
2 

+ k
2

) O/S 

~P/s·... iso/ S 

(3.27) 

We can now interpret the wave function on the right in Equa-

tion (3.26) as a function in oblate spheroidal coordinates. We 

rewrite it as 

t/Jo/s • (3.28) 

where k is the propagation constant, d is the radius of the ring 

focus, ~ = constant is an oblate ellipse, and 71 = constant is a hyper-

boloid of revolution of one sheet. 



The function ~o/s describes a wave with a wavefront that is 

nominally a section of an oblate ellipsoid ( E. "" constant). This wave­

front is modified by the term exp[ -i tan- l ~ ITI) as TI varies from 1 to 

O. In fact, this arctangent factor has a simple but intriguing 

geometrical interpretation that will be discussed in Chapter 4. The 

exponential amplitude exp[-kd(l-Tl») specifies the amplitude 

distribution on a surface perpendicular to the direction of propaga­

tion. In the paraxial limit, this term reduces to the traditional 

Gaussian amplitude distribution as shown in detail below. Further, 

the amplitude factor [Tl 2 +~2)-1/2 ensures that the wave energy falls 

to zero in the limit as the wave propagates to infinity. That is, as 

z ~oo, C;~OO and t/lo/s ~O. This factor equals (qr_)1/2/d where r+ 

and r_ are as given by Equation (3.15). 

Equation (3.28) is essentially the same as Equation (21) in 
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the paper by Einziger and Raz [1987). However, Equation (21) in that 

paper contains an error. The sign of the term (wo/v).a.cosTi in the 

last line of the equation should be positive. Careful insertion of 

Equation (20) into Equation (18) will reveal this to be true. Further­

more, it is obvious that if the magnitude of u(r,r,r') is to have a 

maximum on axis, TI"" 0, the argument of the exponential amplitude must 

be zero. Additional differences between Equation (3.28) here and 

Einziger and Raz are in the notation used for the oblate spheroidal 

coordinates, the modifying coefficients, and the use here of complex 

exponential notation. 
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We now show why Flammer's substitution enables the same 

conversion of a spherical wave to a Gaussian beam as the 

complex-point-source approach. Consider the oblate spheroidal 

coordinate system with origin at (O,O,-id). The parametric equations 

of Equation (3.7) become 

2 1/2 2 1/2 
x '" do/s (1 + E. o/s) (1 - 1]) cos ¢ , 

2 1/2 2 1/2 
y '" do/S (1 + e o/s) (1 - 1') sin¢, (3.29) 

We now make the substitution 

e(o/s) ...... +i~P/s 

id(o/S ...... +dp/s (3.30) 

which is Equation (3.22) in reverse, and Equation (3.29) becomes 

2 1/2 
1] 2) 

1/2 
x '" dp/ s ( E. P/s- 1) (1 - cos¢ 

2 1/2 
1] 2) 

1/2 
y '" dp/ S( E. PiS - 1) (1 - sin¢ (3.31) 

These are the parametric equations for the prolate spheroidal co-

ordinate system whose origin has been shifted to the real point 

(O,O,-d). This is the location of the prolate spheroidal focus at 

Z a -d. We can now consider spherical waves of radius r+ given by 

Equation (3.11) and with a real point source on axis. 



The transformation of Equation (3.22) has enabled us to 

convert a spherical wave to a wave with a Gaussian amplitude distribu-

tion without resorting to either the concept of complex point sources 

or the paraxial approximation. The function~OIS is an exact solution 

to the scalar Helmholtz equation regardless of the value kd or 

distance from the z axis. In the paraxial limit, this new wave 

function exhibits all of the pertinent characteristics of the tradi-

tional scalar description of the fundamental mode of a Gaussian beam. 

This comparison will now be explored in depth. 

A New Mathematical Model for the Fundamental Mode 
of a Propagating Gaussian Beam 
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To recapitulate from Chapter 2, the traditional scalar de scrip-

tion of the fundamental mode of a Gaussian beam can be written 

u(x,y,.) = i exp f -1 [kZ -cJl+ 
w(z) t 

(3.32) 
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where 

(3.33) 

z2 + z 2 
R(z) .. _____ 0_ 

(3.34) 
z 

(3.35) 

The beam parameters Zo and Wo are known as the Rayleigh range 

and beam waist respectively, and are related by 

z o 

kw 2 
o =--

2 
(3.36) 

with k the propagation constant of the medium. The wave function 

described by Equation (3.32) is interpreted as having a spherical 

wavefront, with radius of curvature R(z), a Gaussian amplitude 

distribution that expands according to the hyperbola defined by Equa-

tion (3.35), and a phase difference or draw-up ~ between the Gaussian 

beam and a plane wave. The amplitude factor wolw gives the expected 

intensity decrease on axis attributable to expansion of the beam. 

Equation (3.35) defines a hyperbola of constant amplitude lie 

and divergence angle 6. We can relate it to a single hyperboloid of 

revolution in the oblate spheroidal coordinate system, obtaining an 



expression for z/zo in oblate spheroidal coordinates that will 

facilitate the comparisons between the traditional Gaussian beam model 

and the one suggested in Equation (3.28). The value of the beam waist 

Wo is the value of p on the surface described by Equation (3.35) in 

the cross-sectional plane Z ... O. Using the parametric equations in 

Equation (3.5), we note that when z ... 0, ~ III 0, and therefore 

coshp ... 1. This leads to the expression for w0
2 , that is 
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(3.39) 

The value of w2(z) equals p2 in any z ~ 0 or p~ 0 plane. 

Comparing these expressions with Equation (3.35), we can write 

w2(z) -- ... 
2 w 

o 

2 2 2 d cosh JJ. sin 0 

d2 sin2
0 

Cancelling common terms leads to 

2 cosh P ... 1 + 
2 z 

z o 
2 

... 2 
1 + z 

z o 
2 

(3.40) 

(3.41) 

Once again, we employ the trigonometric identity of Equation (3.l0a) 

and find that 

z sinhp III -z 
o 

(3.42) 
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Since ~= sinh~ in the oblate spheroidal coordinate system, we now 

have a simple expression for the phase draw up cI>. Equation (3.33) 

now becomes 

(3.43) 

Close study of equation (3.34) reveals that the spherical 

wavefronts in the classical Gaussian beam description possess a radius 

of curvature consistent with the vertex curvature of a family of 

oblate ellipsoids having an interfocal spacing of 2zo. Relating these 

ellipsoids to the oblate spheroidal coordinate system gives the radius 

of the focal ring as d = zOo This value of d conflicts with that 

predicted by the amplitude hyperbola of Equation (3.35), where 

This ambiguity arises from the paraxial 

approximation where 8 is so sDlall that sin 8 and tan8 are 

indistinguishable. For the purposes of this chapter, d will be 

assumed to equal ZOo 

In the limit of very small 8, the exponential amplitude 

expl-(x2+y2)/w2(z)] equals expl-kd(l-cose)] of Equation (3.28) 

where ~ = cos 8. Using the parametric equations in Equation (3.5), 

we see that 

2 sin e = 
2 2 x + y 

2 2 d cosh ~ 

Employing the trigonometric identity of Equation (3.10b) and sub-

(3.44) 

stituting Equation (3.44) into the argument of the exponential ampli-

tude in Equation (3.28) leads to 
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-kd(l - cosO) .. -kd 1 -
[

l _ --=;z..2..;.+y,,-2_

2

_] 1/
2 

d cosh P. 

• (3.45) 

Use of the binomial expansion and the paraxial approximation produces 

-kd(1 - cosO) E!!: -kd 

.. - k(x2 + l) 
2 2d cosh P. 

2+ 2 ] _ x Y 

2 2 2d cosh P. 

Assuming a value of Zo for d, we can rewrite Equation (3.36) as 

1 

w 
o 

2 
k 

'" -
2d 

(3.46) 

(3.47) 

Using Equation (3.47) and substituting the expression for cosh2p. given 

by Equation (3.41) into Equation (3.46) yields 

-kd (1 - cos 0) ::: .. (3.48) 

The exponential amplitude for the wave function expressed by Equation 

(3.28) is seen to be exactly equivalent to that of a traditional 

Gaussian amplitude in the limit of small 0 • 
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Going further, we can compare the amplitude factorCn 2 + ~2]-1/2 

in Equation (3.28) with wo/w(z) in Equation (3.32). Again in the par-

axial limit of 7]'" 1, we note that 

2 -1/2 -1 
C 1 + ~ ] ... cosh IJ. (3.49) 

Since we established in Equation (3.40) that w(z)/wo ... coshlJ. , the 

amplitude factors are seen to be exactly equivalent. Therefore, the 

intensity decrease on axis C7]'" 1] is the same for both models. 

We can now rewrite the wave function ~O/S in the paraxial 

limit to obtain 

(3.50) 

The most notable difference between Equation (3.50) and the 

traditional Gaussian beam description of Equation (3.32) is that the 

wavefront is now explicitly a section of an oblate ellipsoid rather 

than a sphere. 
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Summary 

In this chapter, we have derived an exact solution to the 

scalar wave equation in oblate spheroidal coordinates. This solution 

was obtained using a transformation introduced by Flammer {19571 to 

convert a spherical wave in the prolate spheroidal coordinate system 

to a wave function with a Gaussian amplitude distribution in the 

oblate spheroidal coordinate system. On close analysis of this new 

wave function, we found that it resolved into the traditional 

description of a propagating Gaussian beam in the paraxial limit with 

one important exception; that is, the wavefront is a section of an 

oblate ellipsoid. This new expression possesses significant 

advantages over previous attempts to describe a Gaussian beam, 

including its simplicity and the elimination of the paraxial approxi­

mation. The wave function given in Equation (3.28) is merely the zero­

order term of an entire family of exact solutions to the scalar 

Helmholtz equation which possess a fundamental Gaussian amplitude 

distribution along with predictably higher-order amplitude terms. 

This family will be derived in Chapter 5. Before going on, however, 

we shall demonstrate in the following chapter a further advantage of 

this new formulation for a propagating Gaussian beam. We shall 

develop a simple, elegant and powerful geometrical model for the beam 

which serves to interpret Equation (3.28) in the light of geometrical 

optics and allows for straight-line propagation of a Gaussian beam. 



CHAPTER 4 

A GEOMETRICAL MODEL FOR THE FUNDAMENTAL MODE OF A 

PROPAGATING GAUSSIAN BEAM 

Since Gaussian beams are used in a wide variety of optical 

systems and instruments, a geometrical model of the beam is an 

absolute necessity for system design and analysis. Ideally, the model 

should correspond to the mathematical dscription and interpret it in 

the light of geometrical optics. Many methods exist for predicting 

the first-order properties of a Gaussian beam as it traverses an 

optical system. Those that are wedded to the mathematical description 

of Kogelnik and Li suffer from the approximations inherent in that 

wave function, as well as the awkwardness of describing the beam in 

the Cartesian coordinate system. The more useful, and recently more 

popular, method is that introduced by Arnaud [1969, 1973, 1985] which 

unites the geometrical constructs of the oblate spheroidal coordinate 

system with the wavefronts and amplitude contours of the Kogelnik and 

Li model. In particular, Arnaud utilizes the geometrical concept of a 

ruled surface that is produced by the motion of a skew line. A ruled 

surface is a surface generated by the motion of a straight line, 

called a rectilinear generator, in three-dimensional space. A 

hyperboloid of revolution of one sheet, ~ = constant in the oblate 
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spheroidal coordinate system, is one example of a ruled surface, which 

in this case, results from the rotation of a straight lin~ about an 

axis it does not cut. The straight line is therefore skewed to the 

axis of symmetry, the z axis, and is referred to as a skew line. The 

skew line lies on the surface of the hyperboloid and is everywhere 

tangent to it. 

The skew line has enjoyed some popularity as the basis for a 

Gaussian beam model because of the simplicity and well-behaved nature 

of a straight line. Arnaud treats a complex representation of the 

skew line as a complex ray which obeys the laws of geometrical 

optics. Further work has since extended the representation of the 

fundamental mode of a Gaussian beam by complex rays [Keller and 

Streifer (1971), Einziger and Fe1sen (1982), and Herloski, Marshall 

and Antos (1983)], a concept Felsen [1976] vigorously disputes. In 

contrast, a real representation of the skew line leads to an elegant 

design tool for predicting the first-order properties of a Gaussian 

beam in an optical system. This method was first introduced by Shack 

[1983], and later developed more fully by Kessler and Shack [1984]. 

All of these constructs hinge on a geometrical interpretation 

of the traditional description of the fundamental mode of a Gaussian 

beam as given by Equation (3.32). In contrast, the geometrical model 

that will be developed in this chapter uses a real representation of 

the skew line to interpret the new mathematical description of such a 

beam as given by Equation (3.28). In the course of building this 

geometrical model, the properties of a skew line will be developed in 
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depth. incorporating characteristics noted by Arnaud [19851 and intro­

ducing others. In addition. the concept of the skew line as a real 

ray will be explored. Since this idea does have certain drawbacks. 

the skew line will ultimately be used to build a nonorthogonal 

coordinate system which provides an unambiguous framework for studying 

Gaussian beam propagation. 

Skew-Line Generator of a Ruled Surface 

In this section. we begin by discussing the geometrical 

characteristics of an individual skew line and its relationship to 

both the hyperboloid of revolution and the oblate ellipsoid in the 

oblate spheroidal coordinate system. Later. we shall expand the 

discussion to include the behavior of families of skew lines. This 

development constitutes the background for a later section in which 

the characteristics of a skew line are compared with the ray of 

geometrical optics. 

In Figure 4.1. let NP represent a skew line revolving about 

the z axis. with ON the common perpendicular to the axis and NP in any 

position. Then ON has a constant length. Wo. and as the line NP 

rotates. the pOint N describes a circle of radius Wo in the x-y 

plane. The angle between the revolving line and the z axis is also a 

constant. 6 • 

Let P(x.y.z) be any point on the skew line and let NP = 1 . 

Then the parametric equations of the locus of p. in terms of 1 and~ 

are 
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I 

P(X,~'Z) 

1he o<ientatiOO of a s,ev line 1 vith .espee

t 

to 
the' a~i. fo< tVO possible de~iation angle.,S 

and fJ • 
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x .. Wo cos t/J - J. sin8 sin t/J , 

y 1:1 Wo sin t/J + J. sin 8 cos t/J , 

z .. J. cos 6 • 

(4.1) 

The point P lies on a surface expressible as an equation in x, y, 

and z. This equation will be independent of J. and t/J , and we can write 

2 z 

.. W 2 
o 

.. 

1:1 1 

W 2 + o 

(4.2) 

(4.3) 

This is the equation of a hyperboloid of revolution of one sheet, with 

a "waist" radius WO' and I) the angle of the asymptotic cone, or diver-

gence. A cross section of this figure, for t/J= constant, is shown in 

Figure 4.2. 

After the manner of Arnaud [1985], we can project the skew 

line NP onto a second plane parallel to the z 1:1 0 plane and located a 

distance z away. The projected skew line forms the line segment PQ 

shown in Figure 4.3. The angle PO'Q has a constant value a as the 

skew line rotates about the z axis. As z increases, a increases pro-

portionately , while the deviation angle 8 remains constant. If z 
remains fixed, various values of awill generate different figures of 

revolution. Figure 4.4 demonstrates this progression. If a = 0, the 

deviation angle is also zero and as the rectilinear generator rotates 
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I Wo 
I 

~------Zo------~ 

Figure 4.2 Cross section of the hyperboloid generated 
by the rotation of a skew line about the z axis. 



75 

z 

-....;;;;----------
Figure 4.3 The skew line 1 projected onto an x-y plane. 
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Figure 4.4 Different ruled surfaces for varying amounts of 
twist a • 
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about the z axis, it sweeps out a cylinder. As a increases, the 

figure becomes more "twisted," generating hyperboloids of revolution 

of increasing deviation angle and decreasing waist sizes. Finally, in 

the limit as a-."/2, the waist radius Wo~O and the figure becomes a 

right circular cone. 

The "twist" angle a , the deviation angle 6, and the distance 

from the plane of the waist z are related to one another. Referring 

again to Figure 4.3, note that triangle PQO' is a right triangle with 

line segment PO', given by W, the radius of the beam cross section in 

the z=z plane. Line segments O'Q and PQ are then given by 

O'Q = Wcosa , 

PQ = Wsina 

Since O'Q is the projection of the beam waist radius Wo onto this 

second plane, the value Wcosa is always a constant. 

Comparing Equation (4.3) with Equation (3.35), we see that 

W 2 
o 

2 tan 6 
... z 

o 
2 

Using Equation (4.4), we can rewrite Equation (4.5) as 

tan6 ... Wcosa 

(4.4) 

(4.5) 

(4.6) 
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The relationship between tan6 and z can be seen in Figure 4.3 and is 

given by 

t 1: Wsina 
anu'" ---- (4.7) 

z 

Now the ~ependence of the twist angle a on the distance from the plane 

of the waist can be expressed explicitly by 

z 
tana'" -- • z o 

(4.8) 

This is the same result as Equation (3.33) with a the same angle as~, 

the phase difference in the classical Gaussian beam des~ription. 

As Arnaud pointed out, there are two possible orientations for 

a skew line. That is, a hyperboloid of revolution can be generated by 

a skew line deviated to the right of vertical as shown in Figures 4.1 

and 4.3, or by one deviated to the left. This would mean, in the case 

of the former, an angle a "twisted" counterclockwise with respect to 

the positive z axis; and in the latter case, an angle a twisted 

clockwise with respect to the z axis. Figure 4.5 demonstrates this 

principle. The counterclockwise twist will be considered a positive a 

since it is the same direction as a positive~. Conversely, the 

clockwise twist will be taken to be a negative a. Although the skew 

lines are equivalent in the sense that either will generate a 

hyperboloid of one sheet when rotated about the z axis, taken together 

they generate a set of nonorthogonal parametric lines, or coordinate 

curves, on the surface of the hyperboloid. 



Figure 4.5 The two possible twist orientations for the 
skew line 1. • 
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The twist angle a can be used to describe the oblate spher-

oidal coordinate ~, the radius of vertex curvature of the ellipse Re , 

and the conic constant K of the ellipse. By doing so, we can relate 

abstract parameters, such as ~, to a concept that lends itself to 

physical interpretations. Furthermore, we can develop a basis of com-

parison with well-known figures, such as circles and spheres, through 

the relationship of the twist angle to the vertex curvature and the 

conic constant. Ultimately, this will provide greater insight into 

the behavior of the Gaussian beam as it propagates. We shall now deal 

with the relationship between the twist angle and the oblate 

spherOidal coordinate ~, and develop the remaining relationships later. 

The oblate spheroidal coordinate ~ is a hyperbolic angle which 

can be equated to a circular angle, in this case a, through the 

gudermanian function. The gudermanian expresses the functional 

relationship between hyperbolic and circular angles without resorting 

to imaginary values. This function is written as 

a = gd(~) (4.9) 

where 

gd(~) a 

~ 

r dt 
)cosh(t) 
o 

and the inverse gudermanian is given by 

a 

~ a gd-l(a) = lcos d~t) 
o 

(4.10) 

(4.11) 
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Performing the integration in both Equation (4.10) and Equation (4.11) 

leads to a pair of inverse relationships 

and 

Expanding the tangent function in Equation (4.l2b) leads to 

eP. ... 

and 

-p. 
e ... 

1 + sina 
cosa 

1 - aina 
cosa 

(4.l2a) 

(4.l2b) 

(4.13a) 

(4.l3b) 

We can now derive a more explicit functional relationship between p. 

anda. Using the definitions of the oblate spheroidal coordinate ~ 

given in Chapter 3 and the exponential definitions of sinhp. and 

coshp. , we can write 

~.. sinhp." tan a 

(t2 + 1)1/2 = coshp." l/cosa , (4.14) 

tanh p." sina • 
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Using the expressions in Equation (4.14) , we can rewrite the 

parametric equations for the oblate spheroidal system as 

x .. dsinOcos</> 
cosa 

y .. dsinOsinc/> (4.15) cosa 

z = dtana cosO. 

We can conclude from the foregoing discussion that the skew line and 

its corresponding twist angle can be used in describing the oblate 

spheroidal coordinate system in which we have described a new 

mathematical model for a propagating Gaussian beam. Therefore, they 

should be equally useful in describing the beam itself. 

In Equation (4.3), varying Wo and 6 will generate a family of 

hyperboloids related by their common focus. As shown in Figure 4.1, 

each member of this family possesses its own rectilinear generator 

N'P' and deviation angle 0, but all members have common perpendiculars 

to the z axis, ON' = W' cos a. Let the length of the skew line N' p' I:: 1. 

remain constant for allO. Then the parametric equations of the locus 

of P'(x',y',z') are similar to Equation (4.1) and we can write 

x' ... w' cost/> = W' cosacos4> - lsinOsint/> 

y' .. W'sint/> I:: W'cosasint/>+ .tsinO cost/> (4.16) 

z' .. lcoso • 
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We wish to find the surface containing pI, which is the 

endpoint of all skew lines having the same length 1 and twist a from 

the plane of the waist. The surface will be independent of 0 and ~, 

and we can write 

, . 

(4.17) 

After some algebraic manipulation, Equation (4.17) becomes 

2 2 1 /sin a 
(4.18) 

This is the equation of an ellipse at a constant "distance" 1. , as 

measured along a skew line, from the plane of the waist of the hyper-

boloid of revolution. A family of skew lines with constant length 1 

can be seen in Figure 4.6. The arc PA lies on the ellipsoid specified 

by the constant angle a. More will be said about this family later. 

Since the parameter l/sina> 1. for a<7r/2, this particular ellipsoid 

has foci and semi-major axis located in the plane z = 0 and is a 

figure of revolution about the z axis. As such, it is referred to as 

an oblate ellipsoid. 

Equations (4.3) and (4.18) represent specific examples of more 

general families of hyperboloids of revolution of one sheet and oblate 

ellipsoids that are orthogonal. The general equation for a hyper-

boloid of revolution is given by 



l 

Figure 4.6 A clockwise fan of skew lines ending in elliptical 
arc PA. 
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-""'2=--.". ... 1, 

d
2 

ah 

while for an ellipse it is 

2 z 
-~--=- ... 1, 
a 2 _ d2 

e 

a < d e 
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(4.19) 

(4.20) 

where p2 ... x2 + y2. For a figure of revolution about z, the focus 

describes a ring of diameter 2d. The parameters ae and ah, shown in 

Figure 4.7, refer to the semi-major axis of the ellipse and the waist 

radius of the hyperboloid, respectively. 

Comparing Equation (4.18) with Equation (4.20), we note that 

(4.21) 

This expression can be reduced to 

1 ... dtana (4.22) 

and Equation (4.20) becomes 

(4.23) 



p 

Re./K 
K+1 

Figure 4.7 Cross section of an oblate ellipse and hyperbola 
with common foci at ± d. 
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Note that the twist angle a determines not only the length of the skew 

line 1 , but also the specific ellipsoid in a family of ellipsoids 

with the same focus. Therefore, this angle can be used to ascertain 

both the conic constant and the radius of vertex curvature associated 

with each ellipsoidal surface. We will now establish the relation-

ship between these two parameters and the twist angle. 

Figure 4.7 demonstrates the connection between the focus 

distance d, the conic constant K, and the radius of vertex curvature 

Re. The conic constant occurs in the expression for the sag of the 

ellipse and provides a basis of comparison with a sphere, for which 

K = O. These relationships can be expressed by 

(R 2)K 
d2 = _....;;.e __ 

(K + 1)2 
(4.24) 

and 

R 2 
d2 = _...;e~......". 

(K + 1)2 
(4.25) 

Comparing Equations (4.20) and (4.23), we see that the lengths of the 

skew line and the semi-minor axis are equal. Making this substitution 

in Equation (4.25) yields 

R 2 
e (4.26) 
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Using the expression for d2 given by Equation (4.24), we can rewrite 

Equation (4.26) as, 

2 tan a = 
R 2 

e 
= -

1 (4.27) 
K 

Equation (4.27) leads to expressions for both the sine and the cosine 

of the twist angle in terms of the conic constant. These expressions 

are 

2 K 
cos a .. K + 1 (4.28) 

1 =--K + 1 

A general expression for the hyperboloid of revolution can be 

obtained by comparing Equations (4.19) and (4.3). First, note that 

where 

W 2 
o .. - __ a 

tan2l) 

ah .. dsinl) 

2 ah - --2 tan l) 
(4.29) 

(4.30) 

Since l) is a specific deviation angle and 8 represents all possible 

such angles between 0 and ±1T/2, replacing l) by 8 produces a family 

of hyperboloids expressed by 

1 (4.31) 



In this formation, the "Rayleigh range" for any specific hyperboloid 

is given by 
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Zo .. dcosf) (4.32) 

and the expression for the waist radius has the form 

Wo .. dsinf) (4.33) 

So far, we have discussed the characteristics of a skew line 

as it pertains to both a hyperboloid of one sheet and an oblate ellip­

soid. We began by shoWing how a straight line tilted at an angle 6 

from the z axis and skewed to it forms a single hyperboloid upon 

rotation about the z axis. Next, we found that the endpoints of a 

family of skew lines all having the same length and twist formed a 

single oblate ellipsoid. We then expanded the equation for the 

hyperboloid to include all possible deviation angles f) between 0 and 

~/2 and derived a general equation for a family of hyperboloids with 

the same focus spacing. We performed the equivalent procedure for a 

family of ellipsoids. Along the way, we were able to relate the twist 

angle a of the skew line to the skew-line length, the conic constant 

of the ellipse, the gudermanian of the hyperbolic angle ~ in the 

oblate spheroidal coordinate system, and the phase draw up ~ in the 

traditional description of the fundamental mode of a Gaussian beam. 

We can also see from Equations (4.22), (4.8), and (3.33) that this 

phase draw up is directly proportional to the skew-line length, or 
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1 
d (4.34) 

We may expand on the relationship between an ellipsoid, speci-

fied by a, and the rectilinear generators of a family hyperboloids. 

Each member of this family of skew lines has the same length 1, and a 

deviation angle 8 appropriate to its hyperboloid, and it intersects 

the plane of the waist along a line segment at an angle ~ from the 

x axis. We shall refer to this family, or aggregate, of skew lines as 

a fan, as depicted in Figure 4.6. The parametric equations for this 

family are given by Equation (4.15), with a and ~ constant. Each skew 

~ 

line, represented here as the vector s, has the same length between 

the elliptical arc PA and the line segment ON. The intersection of 

each successive skew line with segment ON is a distance dsin8 from the 

origin where 8 is the deviation angle of the new skew line and 

represents another member in the family of hyperboloids. Further-

more, each skew line is perpendicular to the elliptical arc. This is 

intuitively true since each skew line lies on a hyperboloid, the 

orthogonal surface to an oblate ellipsoid. A more detailed proof of 

this orthogonal relationship is given in Appendix B. 

A Geometrical Interpretation of exp[-itan-ltly] 

Both the classical mathematical model of a Gaussian beam given 

in Equation (3.32) and the new model of Equation (3.28) include arctan-

gent factors in their exponential phase terms. The geometrical 



interpretation of these terms, if any exists, is not intuitively 

obvious, but such an interpretation would provide much useful insight 

into the nature of a phase front as it propagates. In the case of the 

term exp[-itan-l~/~ ], a simple geometrical explanation does exist. 

Figure 4.8 displays the skew line PN once again at a deviation 

angle 0 , along with the attendant elliptical arc PA. Further, the 

figure designates two planes, one perpendicular to the z axis at the 

point 0', and the other perpendicular to the z axis at point A. The 

0' plane intersects the hyperbola of deviation angle 0 in a circle 

with radius p = PO'. The A plane is the tangent plane to this/oblate 

ellipsoid at the point (O,O,A). The distance along the z axis between 

these two planes is the sag of ellipse. As demonstrated earlier in 

this chapter, the distance AO must be the length of the skew line, 

dtana. Therefore, the equation for the sag is given by 

91 

sag = (1 - cosO) dtana • (4.35) 

The distance from plane 0' to plane A along the skew line, 

designated ~1 in the drawing, is simply sag/cosO or 

dtana (1 - cosO) 
cosO 

The increased length of the skew line translates directly into an 

(4.36) 

increase in the twist angle a. We shall refer to this increased twist 

as ~a. The entire length of the skew line from the pOint N until it 
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l 

l= dtan a cos8 

Figure 4.8 Differential change in twist angle. Aa • 
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intersects the plane A is given by 1 +Al. Given in terms of the 

twist angle, this equality can be written 

1 +Al = dtan(a+Aa) 

substituting the value of dtana for 1 and Equation (4.36) for 

yields 

dtana dtana + cos6 - dtana ... dtan( a + Aa) 

Equation (4.38) reduces to 

~ .. tan( a+Aa). 
cos6 

(4.37) 

(4.38) 

(4.39) 

From the definition of the oblate spheroidal coordinates, we can sub­

stitute t, and 11 for the terms tana and cos6 respectively, and 

Equation (4.39) becomes 

~ .. tan( a+Aa) (4.40) 

Finally, by taking the arctangent of both sides, we obtain 

tan- l £'/11" a+ Aa • (4.41) 
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Some algebraic manipulation is required to obtain an expression for~a 

in terms of ~and '1. This equation is 

The entire exponential phase factor exp[-itan- l ~/'1J can then be re-

written as 

exp [-itan-1~/~1· exp [-itan-1~ -itan-
1 (~~~;~) ] (4.43) 

The difference between the exponential arctangent phase term of the 

classical Gaussian beam mathematical model and the one represented by 

Equation (3.28) is the phase term attributable to ~a. 

The exponential factor exp[-itan-I~/'1J can be interpreted as 

representing the difference in phase that a wave disturbance would 

undergo in traveling along the skew line in the time required for the 

edge of the beam to advance to the z distance represented by plane A. 

In other words, as the beam propagates, its center will pass plane A 

at time tl. At a later time t2' the beam edge will pass plane A and 

in the time t2 - tl, the phase of the beam will have changed by ~a. 

Another interpretation is that of an off-axis or wavefront error. 

That is, a wavefront is ideally a section of an oblate ellipsoid, but 

off-axis it is deviated from the ideal by an amount given by ~alk. 

For example, a = 450 at the Rayleigh range of any Gaussian beam. In 

the case of a highly divergent beam with a (J of 100 at the lie field 



point, the wavefront will have a ~/8 deviation from a perfectly oblate 

ellipsoid at the lie radius at the Rayleigh range. We can expand on 

this calculation and compare the classical wavefront with the new 

model. In this case, there is a ~/6 difference at the lie radius of 

the Rayleigh range. Finally, a surface of constant phase in the new 

model will be curved toward the plane of the waist and inside the 

figure of the oblate ellipsoid. Although it is tempting to believe 

this makes the wavefront more spherical, the opposite is true. An 

oblate ellipsoid is always curved inside the figure of a sphere whose 

radius corresponds to the vertex curvature of the ellipse. 

The Skew Line as a Ray 

We have pointed out a number of interesting features of 

individual skew lines as well as fans of skew lines. In particular, 

we noted that the relationship between an elliptical arc and a fan of 

skew lines demonstrates three characteristics of wavefronts and their 

trajectories. First, the spatial separation as measured along any 

skew line of the fan between an elliptical arc and the plane of the 

waist remains constant. This statement can be generalized to include 

the separation between any two elliptical arcs of different twist 

angles and perpendicular to the same family of skew lines. Second, 

successive elliptical arcs are perpendicular to a skew line prompt­

ing comparisons between successive arcs on a wavefront and the 

wavefront's orthogonal trajectory or "ray". Finally, the skew line is 

a straight line, as is the current geometrical-optical model ray in a 

homogeneous medium. 
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Still further, we can prove that when a ray with a skew-line 

trajectory is reflected from an oblate-ellipsoidal mirror, the re-

f1ected ray also possesses a skew-line trajectory on the same 

hyperboloid as the incident ray. Proof of this requires a three-

dimensional vector analysis and can be found in Appendix C. This 

particular characteristic of the skew line finds a useful application 

in modeling ray behavior in an optical resonator. The continuum of 

all such skew rays forms the hyperbolic amplitude contours. Such an 

envelope of rays has been discussed by Bykov and Vainshtein [1965J, 

Kahn [1965], and Steier [1966]. 

All of the above demonstrates that the skew-line model of a 

propagating Gaussian beam as expressed in Equation (3.28) possesses 

strong parallels with the theorems of geometrical optics. However, 

two traits of B skew line prevent it from being defined as a ray. The 

first is that the skew line is not the gradient of the wavefront, an 

oblate ellipsoid with a Gaussian amplitude distribution. Second, if a 

skew line is to be seen as a ray, the possibility of its two different 

orientations must be considered equally likely. One way to include 

both positive and negative (counterclockwise and clockwise) twists in 

the geometrical description of a Gaussian beam is to treat the two 

skew lines as unit coordinate vectors, 0 and ¢, which together with 

A 
the unit vector 8, forms a nonorthogonal coordinate system. 
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Clockwise Counter Clockwise 

Figure 4.9 Clockwise and counterclockwise skew line fans. \0 

" 



The skew line fan of Figure 4.6 can be repeated for a counter-

clockwise twist and the resultant figure forms a mirror image of the 

clockwise fan. These mirror-image fans are demonstrated in 

Figure 4.9. The skew lineEiof Figure 4.6 reappears as ~ pointed in 

the opposite direction and the tangent vector to the ellipse, t has 
~ 

been renamed 8 • The skew line for a positive a, or counterclockwise 

A twist is u. Figure 4.9 sketches the skew line fans for a few discrete 

deviation angles. In actual practice, the fans are surfaces called 

right conoids, as shown in Figure 4.10. All of these conoids are 

ruled surfaces; they are formed by the motion of a straight line, the 

skew line, in three-dimensional space. Together with the oblate 

ellipsoid, these surfaces form three coordinate surfaces in a non-

orthogonal coordinate system, which we shall now explore. An 

excellent discussion of general three-dimensional curvilinear 

coordinate systems can be found in Stratton's Electromagnetic Theory 

[1941]. 

Nonorthogonal Coordinate System 

The coordinate system whose unit base vectors are shown in 

Figure 4.11 consists of two right conoids, one left-handed and the 

other right-handed, whose axis of symmetry is the z axis, and an 

oblate ellipsoid with focal ring of radius d in the x-y plane. The 

right-handed conoid is the counterclockwise skew-line fan (+a) , so 

named because the skew lines seem to sweep in the direction of the 
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fingers of the right hand with the thumb pointed in the direction of 

the positive z axis as a varies from -"/2 to +"/2. Similarly, the 

left-handed conoid is the clockwise skew-line fan (-a). This time, 

as a varies from +"/2 to - "/2, the skew lines sweep in the direc tion 

of the fingers of the left hand when the thumb is pointed in the 

direction of the positive z axis. The coordinate angle 8is the 

deviation angle of the skew line with respect to the z axis. This 

coordinate system is not orthogonal since the coordinate surfaces do 

not intersect at right angles. 

The parametric equations for this system are 

(u ; v) 
x(u,v,8} .. --------~-~~~-

(T) 
dsin8 cos 

cos 

dsin8 sin (4.44) y(u,v,8) .. ----------~~-+ 
cos 

z ( u, v , 8) .. dcos 8 tan (u ; v) 

where 

u" q,+a (4.45) 



Figure 4.10 Left-handed (clockwise) and right-handed 
(counterclockwise) right conoids. 

These are the continuous surfaces generated by the skew-line 
fans of Figure 4.9. The figure on the left is a left-handed 
right conoid corresponding to a clockwise twist, and the 
figure on the right is a right-handed right conoid 
corresponding to a counterclockwise twist. In both drawings, 
the lower circle represents the plane of the waist. The 
vertical dotted line represents the z axis in both. 



Figure 4.10 Left-handed (clockwise) and right-handed (counterclockwise) right conoids 
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Figure 4.11 The unit base vectors 0, ¢, and 9 for a 
nonorthogonal coordinate system. 

The two conoids join in an elliptical arc in the left-hand 
figure. Their junction in the plane of the waist is shown on 
the right. 



Figure 4.11 Unit base vectors ~, ¢, and ~ for a nonorthogonal coordinate system 

t-' 
o 
t-' 
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and 

V D t/J - a • (4.46) 

Note that these equations strongly resemble the parametric equations 

of the oblate spheroidal coordinate system. In the latter system, we 

discussed surfaces on which one of the coordinate variables was 

A " /\ constant and the unit base vectors, ~,11, and fIJ, were the normals to 

these surfaces. For the sake of simplicity, we shall not discuss the 

surfaces on which the coordinates u, v, and 8 are constant. Rather, 

"" " we shall outline the unit base vectors, u, v, and 8 , as the vectors 

tangent to the right-handed conoid, the left-handed conoid, and the 

oblate ellipsoid, respectively. 

The position vector rto any point in the three-dimensional 

space is given by 

-; I: x(u,v,8)~ + y(u,v,8)9 + z(u,v,8)~, (4.47) 

"" " where x, y, and z are the unit base vectors in the Cartesian 

coordinate system. A differential change in rdue to small displace-

ments along the coordinate curves is expressed by 

(4.48) 
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If one moves a unit distance along anyone of the coordinate curves, 

the change in it is directed tangentially along that curve and has a 

magnitude of one. The vectors 

ait 
1\ au u ... 

I~~I 
ar-

1\ av (4.49) v .. 

fvl 
ait 

1\ ao (J .. 

~I 
are the unit base vectors for the coordinate system. For the 

nonorthogona1 system here, these vectors can be written in terms of 

the Cartesian base vectors as 

1\ 1\ 1\ 1\ u .. - sin 0 sinv x + sin (J cosv y + cos (J z 

1\ 1\ 1\ 1\ 
v .. - sinO ainu x + BinB casu y + cosO z 

~ ... cosB cos~ Q + cosO sin~ ~ _ sinOsin«u-v)/2) 

(1 - a2)1/2 (1 _ a2)1/2 (1 _ a2)1/2 

1\ 
z 

(4.50) 

where a '" ain (J cos ( (u - v) /2) • Figure 4. 11 shows these vec tors a t two 

different points in space. 
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In the left-hand drawing of Figure 4.11, the observation point 

resides on an oblate ellipsoid some distance from the plane of the 

waist. 
A A A 

The vectors u, v, and Bare shown as tangent to the conoids 

and the oblate ellipsoid respectively. The conoidal surfaces meet in 

an arc on this ellipsoid and are separated in the plane of the waist 

by the acute angle 2a, where ais the twist angle associated with the 

ellipsoid. Likewise, the drawing on the right shows the observation 

point in the plane of the waist with the associated unit base 

vectors. The conoids meet along a line segment in the waist and are 

separated on an oblate ellipsoid by the acute angle 2a. 

The most useful aspect of these unit vectors is their relation-

ship to the unit vectors of the oblate spheroidal system. Starting 

with Equation (4.50), some algebraic manipulation leads to the 

relations 

~ . A A 
u - v 

2 (1 - a2)1/2 

~ A+A 
• u v (4.51) 2a 

A A 
~ 

a _ e . 



Clearly. the connection between the two systems is a simple one with 

the useful result that two straight-line vectors. 0 and ¢. can 

A h 
synthesize the tangential vectors. ~and ~. to two curves in space. a 

hyperbola and a circle. 

Although using a nonorthogonal coordinate system seems an 

unnecessary complication of the geometrical model. this particular 

coordinate system has some advantages over the oblate spheroidal 

105 

coordinate system in describing a propagating Gaussian beam. Specifi-

cally. the normal to the oblate ellipsoid can be obtained from the 

difference between the two skew-line vectors. 0 and 0. This gives us 

the advantage of using straight-line trajectories to predict the 

beam's behavior upon propagation. without neglecting the proper 

description of a wavefront gradient. Also. the nonorthogonal system 

is so closely allied with the oblate spheroidal coordinate system that 

straight-line propagation can be utilized without deviating from an 

exact mathematical description of the beam. 

Summary 

We have developed a simple but precise geometrical interpre-

tation for the alternative mathematical description of the zero-order 

mode of a propagating Gaussian beam represented by Equation (3.28). 

This geometrical model is expressed in the oblate spheroidal 

coordinate system. and it is one of the coordinate surfaces. the hyper-

boloid of one sheet, of this system which forms the basis of the geom-

metrical configuration. Specifically. the hyperboloid is an example 



of a ruled surface which can be generated by a straight line, skew to 

the z axis, that rotates about the z axis. 
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The properties of an individual skew line as well as families 

of skew lines have been discussed in detail. We began by describing 

the hyperboloid generated by the skew line, and then related the skew 

line to the oblate ellipsoid with the twist angle concept. This 

relationship exists in the definition of the conic constant of the 

ellipse, the gudermanian of the hyperbolic angle ~ in the oblate 

spheroidal coordinate system, and in the length of the semi-minor axis 

of the ellipse. Furthermore, the length of the skew line from the 

plane of the waist to an ellipsoidal surface is directly proportional 

to the tangent of the twist angle. 

One intriguing aspect of both the new and the traditional 

model of the Gaussian beam is the presence of a pure phase term which 

has an arctangent dependence. In the traditional model, the phase 

term is exp[-ia], where a is the twist angle described earlier. The 

interpretation of this term is that of a phase draw up, or the 

difference between the actual wavefront and a plane wave. In Equation 

(3.28) however, the term appears as exp[-itan- l ~/~], which represents 

the sag of the oblate ellipse as measured along the skew line. 

The properties of an individual skew line can be expanded to 

include families of these lines, and it is in consideration of one 

type of family in particular, the fan, that strong parallels with the 
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ray of geometrical optics can be found. A fan of skew lines 

intersects any oblate ellipsoid in an arc and each member of the fan 

is perpendicular to this arc. Further, the spatial separation remains 

constant between two successive arcs, as measured along any member of 

the fan, much like the constant separation between any two successive 

wavefronts as measured along their orthogonal trajectories or rays. 

Proceeding with the idea of a skew line as a ray, we found in Appen­

dix C that a ray with skew-line trajectory reflected from a mirror 

that is a section of an oblate ellipsoid yields its opposite member; 

that is, a ray with the skew-line trajectory of the same hyperboloid 

and equal, but opposite, twist angle. 

Finally, we pointed out the failure of the skew line as a 

ray. Specifically, the skew line is not the gradient of an 

ellipsoidal wavefront with a Gaussian amplitude distribution and, 

since there are two possible orientations of each skew line, they must 

be considered equally likely. It was then suggested that the real 

power of the skew-line model might lie in using both orientations as 

two components in a nonorthogonal system, and the details of this 

system were discussed. Rather than being an unnecessary complication 

of the issue, using both of these skew-line vectors makes 

straight-line propagation possible, while providing the unambiguous 

framework necessary for locating points in space, identifying the 

wavefront gradient, and defining deformed surfaces such as aberrated 

wavefronts. 
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CHAPTER 5 

A COMPLETE FAMILY OF SOLUTIONS TO THE 

SCALAR WAVE EQUATION 

In Chapter 3 we noted that Helmholtz's equation is a partial 

differential equat:f.on separable in eleven coordinate systems including 

the polar and oblate and prolate spheroidal coordinate systems. 

Separability means that a complete solution to the differential 

equation consists of a product of three functions, each of which is a 

solution to an ordinary differential equation. In polar coordinates, 

a solution to Helmholtz's equation can be written as 

(5.1) 

where R(r), 9(e), and~(~) are solutions to the separated radial, 

polar angular, and azimuthal equations respectively. 

When the Helmholtz equation is separated in polar coordinates, 

the radial equation has the form 

Solutions to this equation are the spherical Bessel functions, jn(r), 

spherical Neumann functions Yn(r), and spherical Hankel functions of 

the first and second kind, h(l)(r) and h(2)(r). The separated polar 
n n 

angular equation is the associated Legendre equation 
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Si!O ;0 [9(0) sinOI + [n(n+l) - S:::v] 9(0) • 0 • (5.3) 

with solutions 

9(0) .. ~(cosO) 

Finally, the separated azimuthal equation is 

with solutions 

1 
4>( IP) 

III -m 

4>(IP) .. exp[±imIPj 

2 

(S.4) 

(S.S) 

(S.6) 

The complete solutions to the Helmholtz equation is then the product 

of these separated solutions. Now, Equation (S.l) can be written as 

~(r ,B,IP) .. R(r)S(B)4>(IP) 

(S.7) 

using only one of the spherical Hankel functions for simplicity. 

The same general method can be applied to the situation here, 

that is, to find the entire family of higher-order solutions that has 

as its zero-order term Equation (3.28). As we did in Chapter 3, we 

begin in the prolate spheroidal coordinate system where we described a 

spherical wave emanating from a point source at the focus z .. -d. 

Equation (3.2S) can be rewritten 
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(5.8) 

where n a O. In contrast, a spherical wave converging toward the same 

pOint source would be described as 

using the spherical Hankel function of the second kind. The entire 

family of higher-order, diverging-wave solutions would then be 

(5.10) 

where the angle 6' is the angle r+ makes with the z axis. The value 

of cos6' is given by 

(5.11) 

The geometry of this situation is demonstrated in Figure 5.1. 

Now we perform the transformation of Equation (3.22) on the 

Helmholtz operator V2 + k2 as well as to the individual arguments of 

both the spherical Hankel function and the associated Legendre 

function. The argument of the spherical Hankel function becomes 



p 

--------~--~--~--~~~----------~z 
I 
I 
I 

~d-.... 
I 
I 

Cos8' = 

Figure 5.1 Geometry for a polar coordinate system whose 
origin has been shifted to one of the foci of 
the prolate spheroidal coordinate system. 
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The argument of the associated Legendre function is written 

1 + €.p/sTi 
cosO'" €. + Ti 

pIs 

The complete family in oblate spheroidal coordinates is given by 

where 

and 

dm+n 

dsm+n 
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(5.12) 

(5.13) 

(5.14) 

(5.15) 

it 
-kd( i)n e .. e - -

it 
t .[-~Jj (n+j)f • (5.16) 

jaO it 2 j jf(n-j)f 



We can rewrite Equations (5.15) and (5.16) in terms of the oblate 

sRheroidal coordinates. First, note that 

Now, Equation 5.15 becomes 

and Equation (5.16) is 

-1 
-ijtan ~/1'J e (n + j)! 

2j j!(n-j)! 

• 

113 

(5.17) 

(5.19) 

Obviously, these functions are nonseparable in 17 and ~, although they 

are separable in t and s. To prove that Equation (5.14) is an exact 

solution to the scalar Helmholtz equation, we must obtain the 

appropriate separated differential equations in t and s. This 

derivation will now be shown. 



Solution of the Scalar Helmholtz 
Equation in Oblate Spheroidal Coordinates 
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Helmholtz's equation in oblate spheroidal coordinates is given 

by 

(5.20) 

We wish to convert this equation to a partial differential 

equation in t and s. To do this, we begin by finding the partial 

d~rivatives of t and s with respect to ~ and 7] • These partial 

derivatives are 

and 

ot .. kd 

oe 

2 oS .. -i(1-7] ) 

oe (7] + i~)2 

ot .. -ikd 

07] 

os 
'" -

(5.21) 

(5.22) 

Next, we convert the partial derivatives of ~O/S with respect to ~ 

and 7] to derivatives with respect to t and s. These derivatives can 

be written as 



With further differentiation and some algebraic manipulation, the 

individual right-hand terms of Equation (5.20) become 

h' pI 
- 2ikd - -h P 

2 2 [htl (h I ) 2] +kd -- -h h 
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(5.23) 

(5.24) 
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o 2 0 .1. • - (1-7] ) _'f'o/s 
07] 07] 

(5.25) 

I 2 2 ( hl)2 (P
I

)2 -k d - +-h P 

-kd -- -22[hll (hl)2] h h 

and 

~2 + 7]2 
2 

m2 ce2 + TI 2) o "'O/s . - "'o/s . (5.26) 

u.2 + 1)(1 - 7]2) 0¢2 (1 + e2)(1 - 7]2) 

(1 ) m 
In these equations, hn(d and Pn(s) have been abbreviated to h and P 

respectively. The single prime indicates differentiation with respect 

to the argument; a double prime indicates a second derivative with 

respect to the argument. 

After some further algebraic manipulation and cancelling of 

common terms, Equation (5.20) reduces to 
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2 2 2 [ h"] hi kd(11+i~) 1+i1 1/IO/S+2ikd(11+ iO iltJ;0/s 

pIt 2 t 2 pi 1 + i~11 ,I, 
+ (1 - 11 )(e; + 1) 1/IO/S + 2 P 11+ i~ "'O/S 

p (11+ i02 
(5.27) 

Making the appropriate substitutions for t and s leads to 

hIt ] 1 + 
h 

hi } - 2t il 1/IO/S + (5.28) 

pIt pi 
- + 2s - + p p 

By setting both of these bracketed terms equal to an integer 

constant times tJ; O/S, we can separate the differential equations with 

respect to t and s. The choice of an integral separation constant and 

its specific value is predicated on obtaining a polynomial for Pn(s) 

as shown by Bell (1968). For an integer constant of -n(n+l), the 

first term in Equation (5.28) becomes 

(5.29) 

With an integer constant of n(n+l), the second term in Equation (5.28) 

is 
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(5.30) 

Equation (5.29) is the spherical Bessel equation whose solutions are 

the spherical Bessel functions mentioned earlier; Equation (5.30) is 

the associated Legendre equation with solution pm(s). The wave 
n 

function ~mn(~'ry,¢)o/s as given by Equation (5.14) is indeed an exact 

solution to the scalar Helmholtz equation. 

The amplitude distribution of each higher-order member of the 

family of solutions given by Equation (5.14) contains a fundamental 

Gaussian amplitude with higher-order amplitude terms. The 

Gaussian-like exponential amplitude term, exp[ -kd(l - ry ) J, occurs for 

every member of the family, but as the order number increases, 

increasing orders of (ry 2 + ~ 2) 1/2 occur along with the appropriate 

coefficients. These terms will affect the exact amplitude 

distribution and the amplitude of each family member will vary with 

propagation, that is, with increasing ~. To see this more clearly, 

we shall now explicitly expand the functions h(l)(t) and pm(s) for n n 

some individual orders. 



Legendre Polynomials and 
Associated Legendre Functions 

The associated Legendre functions are given by 

with pm(s) ... 0 for m > n. With m ... O. 
n 

1 

which are the Legendre polynomials. 

and 

In Tables 5-1 and 5-2. 

s .. 
1 + i~TJ 

TJ + i~ 
... -1 

itan /;TJ e 
-1 

-itan t/TJ • e 
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(5.31) 

(5.32) 

(5.33) 

(5.34) 



Table 5.1. Legendre polynomials 

Po(s) - I 

P,(s) 

p.(s) 

I - -[3s2 
- 1] 2 

I - 8[35s4 
- 30s2 + 3] 
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Table 5.2. Associated Legendre functions. 

P~(s) 

P~(s) 

P~(s) 

P;(s) • 15v'f"':7 I 



122 

Spherical Hankel Functions 

The spherical Hankel function of the first kind is given by 

n 

(5.36) 

The spherical Hankel function of the second kind is given by 

(5.36) 

In this particular case, the argument of the Hankel functions is given 

by 

it '" kd( 7] + i~) , 

or 

t '" kd ( ~ - i7]) 

Table 5.3 lists the higher-order Hankel functions for the specific 

wave function 1/Imna, Tl,t/J)O!S given by Equation (5.14). 

(5.38) 

(5.39) 



Table 5.3. Higher-order values of the function, 

e-kd(I-'1)eikdfe-itan-lf/'l 

kd.;;r+p 

ih~) (t) {I _ ..;:e,-_ita_n_-I_f/'l_} 

kd.;;r+p 

ISe-i2tan-'U'l 
(kd)2(fj2+~2) 
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Summary 

Two families of exact solutions to the scalar Helmholtz 

equation have been introduced--a new one in the oblate spheroidal 

coordinate system and its related family in the prolate spheroidal 

coordinate system. These solutions consist of products of spherical 

Hankel functions and associated Legendre functions which are not 

separable in their respective coordinate systems. Although 

nonseparability adds an additional level of complexity, it avoids the 

infinite-sum solutions derived upon first separating Helmholtz's 

equation in three dimensions. These solutions are not restricted by 

any approximations and are valid for any value of the product kd and 

at any point in space, with the obvious exception of the focal points. 

We obtained the complete family of solutions by using the same 

Flammer transformation utilized in Chapter 3 to obtain the fundamental 

Gaussian solution in oblate spheroidal coordinates from a spherical 

wave in prolate spheroidal coordinates. We performed this conversion 

without resorting to the paraxial approximation or the concepts of 

complex point sources or complex space-time shifts. Just as the 

fundamental term was an exact solution to the scalar Helmholtz 

equation, so too are the higher-order solutions unencumbered by the 

paraxial approximation. 
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Each member of the family of solutions in the oblate 

spheroidal coordinate system possesses a fundamentally Gaussian 

amplitude distribution with higher-order amplitude terms, all of which 

vary upon propagation. In addition, the exponential phase is 

fundamentally a section of an oblate ellipsoid, also with higher-order 

terms. These additional phase terms are of the form exp(-itan- l ~/~J 

which was shown in Chapter 4 to be the sum of the twist angle a and 

the sag of the oblate ellipsoid expressed as a differential twist 

angle Aa. 

One way to view the family of solutions given in Equation 

(5.14) is as spherical wave functions with complex arguments. In the 

next chapter we shall compare this family of solutions to the body of 

literature dealing with complex-argument solutions to the scalar wave 

equation and include fields generated by complex point sources and 

complex space-time shifts. We shall also relate the geometrical model 

mapped out in Chapter 4 to previous work on complex rays. 



CHAPTER 6 

AN HISTORICAL PERSPECTIVE ON GAUSSIAN 

BEAM PROPAGATION AND COMPLEX FUNCTIONS 
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When Kogelnik and Li developed their mathematical description 

for a propagating Gaussian beam, they defined a complex beam parameter 

q(z) given by Equation (2.20). This parameter is a complex phase term 

and a function of the wavefront radius and spot size. Since that 

time, complex quantities have appeared in different incarnations to 

describe a Gaussian beam and its propagation. In particular, the 

concept of a Gaussian beam arising from a complex point source has 

become quite popular since all the classical solutions for real point 

sources, such as scattering from spheres and diffraction from an edge 

can be converted into solutions for complex point sources by analytic 

continuation. While we have avoided the idea that a Gaussian beam 

originates from a complex point source, the body of research parallels 

the developments presented here. Other similarities can be noted in 

the study of complex-argument Hermite-Gaussian and Laguerre-Gaussian 

functions as well as in the idea of complex rays. We present in this 

chapter a comparison between this previous work and the model 

developed in Chapters 3 through 5. 



Complex Arguments 

Eigensolutions to the approximate wave equation given by 

Equation (2.18) are conventionally expressed as products of a Hermite 

polynomial of real argument and the complex Gaussian function 

exp[-ik(x~y2)/2q(z)1, where q(z) is the complex beam parameter of 

Equation (2.20). Siegman [19731 sought to express both the Hermite 

polynomial and exponential phase as a function of q(z) in order to 

make the eigenfunctions more symmetric and elegant. He did not vary 

the complex beam parameter so that the argument of the Hermite-

Gaussian polynomials are functions of Cartesian coordinates. Siegman 

found that the complex-argument Hermite-Gaussian normal modes in two 

dimensions only are 
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2 - cx ( -(C'x) e (6.1) 

wher~ c • ik/2q and qo is as given in Equation (2.24). Use of these 

eigensolutions led him to two interesting conclusions. The first was 

that these new functions are not orthonormal since their operator is 

not hermitian. Rather, they are biorthogonal with the eigenfunctions 

of the adjoint operator. That is, if ~n(x) represents the adjoint 

solutions, then the biorthogonality relation can be expressed 
00 

I~:(X) A 
"'- (x)dx c K 6 m nnm 

(6.2) 

-00 
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where Kn is the normalization constant. The other conclusion Siegman 

reached was that the wavefronts of the higher-order modes of this new 

set were not spherical. The complex argument VC x in the hermite 

polynomials contributes an additional phase variation to the usual., 

spherical phase of the conventional real-argument hermite poly-

nomials. Siegman also pointed out that this procedure of employing 

complex arguments could be applied to the Laguerre-Gaussian 

polynomial s • 

Shin and Felsen [1976] showed that the complex-argument 

Hermite-Gaussian wave functions proposed by Siegman could be generated 

by assigning complex locations to the source points in a multipole 

expansion of the field. Specifically, they began with a spherical 

wave as the point source field and then defined a mUltipole field of 

order (m,n) as 

G (r r') = (1...) m (1...)n 
mn ' ax ay 

iklr-r'l e 
4 Ir-r'l 

(6.3) 

where r is the distance from the origin to the observation point and 

r' is the distance between the origin and the source point. The 

source point is assigned a complex location such that 

/r-r,'/ = [x4y2;.(z-ib)2]1/2 (6.4) 

The usual binomial expansion is used and the multipole field of Equa-

tion (6.3) can be written as higher-order derivatives of a complex 
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argument exponential. This is simply a Hermite polynomial of complex 

argument since 

2 -x 
e (6.5) 

The result is comp1ex-source-point mu1tipo1e fields that coincide with 

the complex-argument beam modes of Siegman. Shin and Fe1sen thus 

established a link between higher-order complex argument beam fields 

and mu1tipo1e expansions with complex source points. 

Zauderer [1986] expanded on the use of complex argument 

Hermite-Gaussian and Laguerre-Gaussian beams by showing that they 

arise in correction terms of a perturbation expansion whose leading 

term is the zero-order, paraxial Gaussian beam mode. Expansions of 

this type have been used by other authors [Lax, Louise11 and McKnight 

(1975), Agrawal and Pattanayak (1979), Couture and Belanger (1981), 

Agrawal and Lax (1983), and Takenaka, Yokota, and Fukumitsu (1985)] to 

develop an expression for the higher-order modes of a Gaussian beam 

that is an exact solution to the exact wave equation. Complex argu-

ment functions have played a pivotal role in the search for an exact 

Gaussian beam solution since they are, in a sense, analytically 

continued spherical waves which are exact solutions. 

Previous work in complex-argument eigenso1utions to the wave 

equation had been hindered by the reliance on the Cartesian coordinate 
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system. This difficulty was eliminated by Einziger and Raz [19871 who 

found a fundamental solution to the exact wave equation in oblate 

spheroidal coordinates, beginning in the now familiar regime of a 

complex-argument spherical wave. Their work comes closest to matching 

the conclusions of this research although their zero-order solution 

contains an error and they stopped short of developing an expression 

for the higher-order terms. Furthermore, they make use of the idea of 

complex space-time shifts in the generation of Gaussian beams. This 

bears some resemblance to complex-point-source theory which will be 

considered next. 

Complex Point Sources 

Kogelnik was the first to introduce an ingenious technique for 

obtaining a Gaussian beam from a spherical wave [Gordon 19681. A 

spherical wave is an exact solution to the scalar Helmholtz equation 

and making the radius complex as in Equation (6.4) does not change the 

exact nature of the solution. After using the binomial expansion on 

the expression for the radius r and gathering together real and 

imaginary term in the exponent, the classical expression for a 

Gaussian beam is obtained. The expression for r is only an 

approximation and the resultant beam description is valid only in the 

paraxial region. 

Deschamps [19711 echoed this idea and expanded on it. He 

stated that if the radius were made complex such that r ~ r' + ir" 

where the curves on which r' and r" were constant formed a system of 
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confocal ellipses and hyperbolas. the complex-source-point spherical 

wave would satisfy the exact wave equation rather than the parabolic 

one. This description. he felt. should be a better representation of 

the field. Deschamps went further to interpret the 

complex-source-point spherical wave as a bundle of complex rays 

emanating from the source. The tracing of such rays can be handled by 

geometrical optics methods such as matrix methods. 

A number of authors have expanded on the idea of complex 

source points to obtain the higher-order modes for a Gaussian beam. 

Couture and Belanger [1981] expressed solutions to the exact Helmholtz 

equation as a power series and divided the Helmholtz operator into two 

differential operators. The first operator gave the paraxial or 

fundamental solution While the second represented the higher-order 

correction terms. They expressed these correction terms as higher-

order complex-source-point spherical waves 

where Rc = [p2 + (z+izo)2] 1/2 and the complex polar angle 

given by 

cos8 ... 
c 

z+iz 
o 

R 
c 

(6.6) 

8 c is 

(6.7) 
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This result is very similar to the developments of Chapter 5 although 

they are couched in the circular cylindrical coordinate system and 

Couture and Belanger provided no physical interpretations for the 

functions. 

Both Hashimoto [1985] and Luk and Yu [1985] derived 

expressions for the higher-order beam modes using multipole sources. 

In the latter work, the authors chose an electric mUltipole that, when 

located at a complex point, generated the Hermite-Gaussian beam 

modes. Hashimoto simply used higher-order derivatives of the 

fundamental complex-source-point spherical wave to reach the same con­

clusions. 

The complex-source-point method continues to be used in new 

applications. Norris [1986] employs them in the Gaussian beam 

summation method. The purpose here is to use Gaussian beams as an 

indirect means of computing the field of a point source in an 

inhomogeneous medium. This process avoids the singularities, such as 

caustics and foci, that occur in the field of a point source. Specifi­

cally, Norris describes a way of representing real point sources 

through complex point sources. He does this by noting that the field 

at an observation point due to a real point source is equivalent to a 

distribution of complex sources on the surface of a complex sphere 

centered on the point source. The Gaussian beam summation method can 

be used to great advantage in the study of beam refraction and other 

wave phenomena at an interface. 
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Fe1sen [1976] best summarized the advantages and disadvantages 

of the complex-source-point method. Specifically, it allows for the 

generation of rigorous beam solutions from real line-source or 

pOint-source solutions but the results obtained are not easily 

interpreted in physical terms. For this reason, he recommended a 

combination of the comp1ex-point-source procedure and evanescent wave 

tracking to gain an understanding of the wave processes involved. He 

cited examples [Choudhary and Fe1sen (1973, 1974), Shin and Fe1sen 

(1974), Fe1sen and Shin (1975) and Wang and Deschamps (1974)] where 

this combined technique had been used to advantage in a variety of 

beam guiding and diffraction problems. Finally, he noted that the 

comp1ex-point-sourc~ solutions provide rigorous results against which 

asymptotic methods can be tested. 

The problem of gaining physical insight from the complex­

source-point solutions is not a trivial one. In addition to 

evanescent wave tracking, another means of understanding the physical 

mechanisms involved is the use of complex rays. This subject will be 

considered next. 

Complex Rays 

Kogelnik (1965) showed that the laws for the transformation of 

Gaussian beams by an optical system are formally the same as the 

transformation laws obeyed by the spherical waves of geometrical 

optics. He did this by comparing the behavior of the complex beam 
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parameter q upon transfer and refraction with the radius of curvature 

of a spherical wave. 

Consider two phase fronts of a spherical wave propagating in 

free apace in the z direction. The radii of curvature are given by Rl 

followed by R2 and the perpendicular distance between them along the z 

axis is z. The radii are then related by the expression 

R2 .. R1 + z. (6.8) 

If the spherical wave passes through a thin lens of focal length f, 

the incident wave, of radius Rl, is converted into another spherical 

wave of radius R2' This transformation is given by 

1 
f (6.9) 

The rays associated with the spherical wave are perpendicular to the 

wavefront. The position x and slope x, .. dx/dz of a paraxial ray are 

therefore related to the radius of the wavefront by 

x 
R .. xr (6.10) 

By tracing a paraxial ray through an optical system, one can determine 

the transformation of an incident wave Rl into a resultant wave R2' 

This can be done using the ray matrix with elements A, B, C, and D for 

the system. The overall transformation is then given by 
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(6.11) 

This entire development can be echoed for a Gaussian beam by 

using the complex beam parameter q. We recall from Chapter 2 that q 

is given by 

1 1 - .. 
q R (6.12) 

where R is the radius of curvature of the beam and w is the beam spot 

size. We found in Chapter 2 that the value of q a distance z from the 

plane of the waist is given by 

where 

i7J'w 2 
o q .. 

o ;\. 

(6.13) 

(6.14) 

and Wo is the beam spot size at the waist. Because this transfer law 

is linear, we can define the relationship between an input parameter 

ql and an output parameter q2 separated by a distance z as 
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(6.15) 

After passing through a thin lens, the beam spot size remains 

unchanged although the radii of the input and output phase fronts are 

transformed in the same way as the radii of a spherical wave. There-

fore, the transformation of the complex beam parameter through a thin 

lens is given by 

1 1 _a -_ 1 
f 

(6.16) 

Comparing Equations (6.15) and (6.16) with (6.8) and (6.9), we note 

that the laws for the transformation of a Gaussian beam upon refrac-

tion and transfer are the same as for a spherical wave with the 

complex beam parameter behaving in the same manner as a wavefront 

radius. We can therefore construct a Gaussian beam analog to Equation 

(6.10) which is given by 

X(z) 
q a X'(z) (6.17) 

where X'(z) a dX(z)/dz. Finally, we Can construct a transformation 

law for a Gaussian beam through an optical system using the ray matrix 

which Can be written 8S 

Aq1 + B 
a 

CQ1 + D 
(6.18) 

This is the Gaussian beam analog to Equation (6.11). 
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The parameter X(z) has been identified by Arnaud [19691 as a 

complex ray. He interpreted the complex ray as the skew-line 

generator of the Gaussian hyperboloid. that is. the surface of 

constant amplitude. He further identified its modulus and phase with 

the beam spot size and the phase of the on-axis field respectively. 

When projected onto a plane perpendicular to the z axis. this 

skew/complex ray resolves into two orthogonal components. A(z) and 

B(z). in much the same way as shown in Figure 4.3. The expression for 

X(z) can now be written 

X(z) a A(z) + iB(z) (6.19) 

The functions A(z) and B(z) are the x and y projections respectively 

of the skew line 1.. With the aid of Figure 4.3. they are determined 

to be 

A(z) a: Wcos( tf> + a) 

B(z) '" Wain( tf>+ a) (6.20) 

At this point. we note two differences in notation between 

Arnaud [19851 and the work presented here. First. he measures the 

azimuthal angle 8 from the positive y axis instead of from x. such 

that 8 • 90 +¢. The second and more subtle difference lies in the 



138 
phase of the complex ray. As a result of Arnaud's notation, the ray's 

phase at any point in the beam will depend upon the azimuthal angle 

X(z) has as it traverses the plane of the waist. The mathematical 

expression for the fundamental mode of a Gaussian beam does not 

contain this extraneous angular dependence. Therefore, in order for 

the phase of the complex ray to correspond with the beam's mathe-

matical description, one must calculate the difference between the 

ray's phase in one plane and its phase in the plane of the waist. To 

do this when performing a beam trace through an optical system 

requires an additional procedure using descriptive geometry. This 

involves projecting line ON in Figure 4.3 onto the x-y plane. Note 

that the notation used here does this automatically. 

To find an explicit expression for X(z), we shall consider a 

skew line with a zero azimuthal angle in the plane of the waist and 

assum~ that the origin of the z axis is coincident with the waist. 

Equation (6.20) then becomes 

A(z) .. Wcos~cI» 
B(z) .. - Wsin~cI» 

where we have noted that a" -~cI» • 

(4.7) and (4.5), we find that 

A(z) .. w 
o 

From Figure 4.3 and Equations 

w 
B(z) - -iztan~ .. - iz-2 

z o 

(6.21) 

(6.22) 
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Noting from Equation (3.36) that Zo a kwo2/2. we can express X(z) as 

X(z) a W - i~ o (6.23) 
kwo 

where k is the propagation constant for the medium and Wo is the beam 

spot size at the waist. The modulus of X(z) is written 

(6.24) 

This is precisely the same as Equation (3.35). and we see that the 

modulus of the complex ray equals the beam spot size, w. Likewise, 

the phase difference represented by X(z) is given by 

-1 (2Z ) A~" - tan kw 0 2 (6.25) 

which is simply -a from Equation (4.8). 

Arnaud goes on to demonstrate how the complex ray can be used 

to trace Gaussian beams by Simply treating A(z) and B(z) as two real 

par,axial rays. He further remarks that the quantity 

n [aA(z) B(z) _ A(z) aB(z) ] 
az az 

2 .. -
k 

(6.26) 

is invariant as the beam propagates in free space. The term in 

brackets is therefore the Lagrange invariant for the beam. Finally, 
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he points out that there are two symmetrical skew rays going through a 

given point on the beam surface, one of which can be considered 

rotated clockwise, the other counterclockwise. Due to symmetry, the 

tangent to the beam profile at that point is the bisectrix of the skew 

rays. He goes on to show that this bisectrix intersects the optical 

axis at the wavefront center of curvature. Therefore, by tracing A(z) 

and B(z) through an optical system one can obtain all the first-order 

properties of the beams, that is, beam sizes, waist locations, and 

radii of curvature. 

The use of complex rays to trace a Gaussian beam through an 

optical system should be compared to the W-Wo diagram technique 

pioneered by Roland Shack and described in Appendix A. This technique 

projects the skew line together with the optical axis onto a 

transverse plane. Lens and mirrors are represented by a single point 

on the diagram and distances, beam and Waist sizes, and radii of 

curvature are all calculated from simple geometric principles. This 

method derives its power and simplicity from the tracing of a single, 

real, skew ray as opposed to two real rays as Arnaud has done. 

The aforementioned research in Gaussian beam propagation 

represents some of the highlights in describing a Gaussian beam and 

its propagation in a homogeneous medium as well as extending this 

description to other wave phenomena involving Gaussian beams such as 

scattering and diffraction. While similarities abound between this 

previous work and the research presented here there are four areas in 

which they differ clearly. 
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The first difference is the choice of coordinate system. With 

the exception of Einziger and Raz (1987], all of the previous work has 

concentrated on the Cartesian, polar, or circular cylindrical coordi­

nate systems. Describing a hyperbola is cumbersome in these systems 

and makes the expressions more difficult to use in describing Gaussian 

beams. It also makes geometrical interpretations more unwieldy. Like 

Einziger and Raz, we have used the oblate spheroidal coordinate system 

in which the coordinate surfaces themselves describe the beam's 

amplitude and wavefronts. Unlike these authors, however, we have 

expanded the description to include the higher-order Gaussian beam 

modes and have developed a geometrical model as well. 

Beyond the choice of coordinate systems, the most important 

differences between this work and its predecessors reside in the lack 

of approximations and in the closed-form solution as opposed to an 

infinite-series solution such as a perturbation expansion. Most 

authors have made use of the paraxial approximation or the parabolic 

wave equation, or both, to effect a solution to the scalar wave equa­

tion. Some have used the exact form of Helmholtz's equation but have 

developed only infinite series as a solution to the equation. They 

then compare the first term of the series to the zero-order mode of 

the traditional Hermite- or Laguerre-Gaussian polynomials. The solu­

tion here is closed form, that is, each term or mode in the family is 

an exact solution to the wave equation. This represents a signifi­

cant increase in both simplicity and accuracy for the mathematical 

expression with which to study Gaussian beam propagation. 
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Finally, we have developed a geometrical interpretation for 

the mathematical expression. As we pointed out earlier, it is very 

difficult to grasp the physical significance of a point source at a 

complex location or complex rays. And, despite the usefulness of 

complex-argument functions to model complicated physical processes, 

they provide no insight into the wave phenomena. In contrast, we have 

generated a simple geometrical model by assembling many previous 

developments, expanding on others, and deriving new relationships. 

This model not only interprets our mathematical expression in the 

light of geometrical optics, but it affords the user greater physical 

insight into Gaussian beam propagation. Obviously, this research 

leaves many questions regarding the beam propagation and origin 

unanswered. These issues will be taken up in the next chapter. 



CHAPTER 7 

IDEAS FOR FUTURE RESEARCH 

The model--both the mathematical expression and the 

geometrical construct--presented in this work represents a new way to 

express and conceive of propagating Gaussian beams. It provides some 

novel insights into the nature of these beams but raises even more 

questions about their origin as well as their behavior in an optical 

system. Specifically, there are two major issues that are left to be 

addressed. The first is the extension of these scaIBr-wBve-equation 

solutions to the vector wave equation; the second is the application 

of these solutions to the resonator integral problem to ascertain 

whether Gaussian beams with elliptical wavefronts can indeed be 

generated by spherical resonators. There are, in addition, other 

topics of interest which will now be delineated. 

Vector Wave Equation 

As pointed out in Chapter 1, this research has been restricted 

to the scalar approximation of electromagentic wave theory; that is, 

only the scalar amplitude of one transverse component of either the 

electric or magnetic field is considered in the study of the beam's 

propagation. In order to satisfy Maxwell's equations for a 

charge-free region, this scalar field must have a zero divergence. 

However, as Mukunda, Simon and Sudarshan [1985J have shown, this 
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condition requires that there be no spatial variation of the electric 

field in its direction of polarization. Gaussian beams by definition 

have a spatially modulated field, and therefore, a strictly scalar 

solution will not suffice to completely describe the beam's 

propagation; solutions to the vector wave equation must be 

investigated. Nonetheless, the scalar wave functions represent the 

point of origin of this expanded analysis since the only known general 

method of obtaining solutions to the vector wave equation is by 

applying certain vector differential operators to the scalar wave 

function. 

The vector wave equation is given by 

.... .... 2 .... 
V(V-A) - Vx VxA + k A = 0, (7.1) 

.... 
where A represents the vector wave functions. Since the gradient 

operator commutes with the Laplacian, we can immediately obtain an 

irrotational solution to equation (7.1) from a solution ~of the 

scalar wave equation by taking the gradient of~. Therefore, 

A.V~, (7.2) 

is an irrotational solution to the vector wave equation. 
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Of greater significance, however, are the vector wave 

functions that satisfy the equation, 

4 24 Vx V xA - k A = O. (7.3) 

The solenoidal nature of the functions is ensured by writing the 

solutions in the form, 

4 4./, A=Vx(ao/), (7.4) 

where tJ; is again the scalar wave function derived in this research and 

~ is either a constant vector or the position vector t. 
From the foregoing we see that development of the vector wave 

functions from the scalar solutions derived in this research is a 

straightforward task. These results would allow a complete and exact 

description of a propagating Gaussian beam, provide the necessary 

framework for studying polarization effects in high-numerical-aperture 

beams, and provide much insight into the diffraction of Gaussian beams. 

Resonator Analysis and Beam Origin 

This research has shown that Gaussian beams with oblate 

ellipSOidal wavefronts can exist and propagate as a scalar phe-

nomenon. At the same time, it brings up the intrigUing question of 

whether such beams can be generated by optical resonators consisting 

of spherical or ellipsoidal mirrors. The latter type of resonator 
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would seem intuitively obvious since the mirrors would coincide with 

surfaces of constant phase in the beam. However, ideal resonators are 

conceived of having perfect spheres as end mirrors, regardless of the 

steady-state beam spot size on the mirror. Therefore, the diffraction 

of an oblate ellipsoidal wavefront by a perfectly conducting sphere, 

with an oblate ellipsoidal mirror as a special case, is the problem 

most properly addressed. 

It is interesting to note as shown in Chapter 2 that Slepian 

and Pollack [1961] found prolate spheroidal wave functions to be 

solutions to the resonator integral given by Equation (2.8). In light 

of the strong relationship between Gaussian amplitude wave functions 

and prolate spheroidal wave functions indicated here, there may be a 

definite correlation between these oblate-spheroidal solutions to the 

wave equation and the fields diffracted by a spherical mirror. It is 

not clear whether this is a scalar or vector diffraction phenomenon; 

nor is it clear that the usual Fresnel approximation can be made. 

Finally, it would be instructive to compare both modulus and 

phase functions of the traditional resonator modes--both 

Hermite-Gaussian and Laguerre-Gaussian--with this new family of 

Gaussian amplitude functions. Each of the circular Laguerre modes 

represents a linear combination of a certain number of the rectangular 

Hermites and vice versa. It is quite probable that each of these new 

Gaussian modes will prove to be a linear combination of either of the 

traditional modes. Furthermore, the presence of Brewster angle 

windows, as well as any mirror tilts or misalignments, 



usually cause any real laser to oscillate in the rectangularly 

symmetric Hermite form rather than in circularly symmetric modes. 

It would therefore be most useful to compare the new Gaussian modes 

with the traditional Hermite forms. 

Diffraction 

147 

In Chapter 2, we discussed the approximations inherent in the 

Kogelnik and Li description of a Gaussian beam. Specifically, this 

traditional expression springs from the resonator analysis of Boyd and 

Gordon which relied upon the Rayleigh-Sommerfeld diffraction 

formulation. This formula approximates the point spread function, 

which is the normal derivative of a spherical wave, as a spherical 

wave. Since a detailed analysis of the resonance phenomena is beyond 

the scope of this work, this issue has not been addressed. However, 

the Flammer transformation employed here appears promising as a basis 

for reconstructing an exact diffraction formula. 

The point spread function given in Equation (2.36) can also be 

written, 

~ • V (- e ikr ) .. 211'!. i h(l)(kr) 
- r 1 kr 

(7.S) 
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where we have chosen the z axis as the normal direction for the sake 

of simplicity. The equation for a field u(x'.y'.z') in an x'-y' 

plane a distance z' from the initial field can be expressed as 

00 

u(x',y',.') a .f".I"2W(Z';Z) h~llkr)u(x.y,z)dXdY, 
-00 

where ~(x.y.z) is the initial field and r • [(x'-x)2 + (y'_y)2 + 

(z'-z)2]1/2 

(7.6) 

The integrand in Equation (7.6) contains a Hankel function. 

This is a complex sum of a spherical Bessel function of the first 

kind. j1(kr). and a Neumann function, Yl(kr). Assuming that the 

initial field u(x,y,z) is well-known and well-behaved, solving this 
(1) 

integral equation hinges upon the behavior of h1(kr). Both Watson 

[1980] and Oberhettinger [1984] discuss ways of solving integrals of 

this type. In particular, Oberhettinger substitutes a modified Bessel 
(1) 

function of the third kind, Kn+l/2(kr), for hn(kr) since the former 

converges as r ... 00. This substitution is given as 

h (kr) ~ -i e ~ K3/2 (-iz). (1) -i~3/4~ 
1 2~ 2z 

The next step in the solution, as illustrated by Watson, would 

be to make an integral substitution for the K Bessel function, but it 

is here that the insolubility of Equation (7.6) becomes apparent. 

After substituting Equation (7.7) into (7.6), we see that 
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00 

u(x'.y'.z') ... !!ik(Z'-Z) u(x.y.Z) • (7.8) 

The integral 

-00 

substitution for K is 

00 

)i 
given 

K3/ 2(-ikr) 

( _ikr)3/2 

by Watson as 

K JI (z) ... 1 J-x+, 2 ~ - Z dt 
JI 2J1+l 4t tJl+l Z 

0 

dxdy • 

(7.9) 

provided that R(z2) > O. In the case of Equation (7.8). the argument 

of the K function is purely imaginary since the radius r is real. 

Since the integral in Equation (7.9) does not converge. the 

diffraction integral of Equation (7.8) cannot be solved as it is 

expressed. This difficulty would be avoided completely if the 

argument of KJI(z) were complex. In other words. if the spherical 

waves of Equation (7.5) were transformed into complex-point-source 

waves, the diffraction integral could conceivably be solved without 

approximations. This is the same transformation used in Chapter 3. 

After utilizing the transformation of Equation (3.22), the radius r 

would become complex and the point spread function would be 

transformed from the normal derivative of a spherical wave into the 

normal derivative of a Gaussian beam. The suggestion of this new 

Green's function was broached by Einziger and Raz [1987]. 



Gaussian Beams with Elliptical Cross-Section 

The geometrical model of a Gaussian beam developed in 

Chapter 4 utilized the concept of a skew-line generator of a 

hyperboloid of revolution to simulate circularly symmetric beams. 

This construct is not unique to figures of revolution. A general 

hyperboloid of one sheet, that is, one having an elliptical cross 

section in a plane perpendicular to the z axis, is also a ruled 

surface and can be generated by the motion of a skew line about the 

z axis. This general model can then be used to represent the 

elliptical Gaussian beams produced by semiconductor lasers. 

In the case of a general hyperboloid, the skew line joins 

pairs of points with a constant difference of azimuthal angle on two 

equal ellipses in parallel planes that are symmetrically displaced 

with respect to the origin. The planes containing the ellipses are, 

of course, perpendicular to the z axis. The coordinates of the 

points on the skew line are given by 

P,[acos(~-a), bsin(~-a), cJ , 

and (7.10) 

pl,[acos(~+a), bsin(~+a), -cJ 
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The equation of the elliptic hyperboloid can be written as 

x
2 + l 

a2cos2a b2cos2a 

2 2 z tan a 
c2 

=: 1, (7.11) 

where a and b are the semi-major axes of the ellipse in the x and y 

directions, respectively. Further, the sign of a can be changed 

without altering the equation. This means that the general 

hyperboloid can be produced by a positive or negative twist, just 

as in the case of the hyperboloid of revolution. 

Optical DeSign and Aberration Theory 

This present work can be expanded not only into areas of 

physical optics such as diffraction and general electromagnetic wave 

theory, but it also has potential for use in geometrical optics and 
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optical design. Both the plane wave and the spherical wave have long 

been used as ideal beams in optical system design. They both have a 

constant amplitude on a surface transverse to the direction of 

propagation and are, in general, well-behaved exact solutions to the 

scalar wave equation. Up to now, there have been no Similarly 

well-behaved functions with a non-uniform amplitude to serve as an 

ideal model for beams whose behavior and amplitude distribution fit 

neither the plane wave nor the spherical wave models, such as beams 

with Gaussian apodized profiles. 



Use of this new Gaussian amplitude fUnction is greatly 

enhanced by the straight-line geometrical model given in Chapter 4. 

The power and elegance of using the skew line to predict the first 

order properties of a Gaussian beam in an optical system is amply 

demonstrated by Shack's W-Wo diagram explained in Appendix A. 
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Beyond the first-order design advantages, this new model of a 

Gaussian beam serves as a starting point for studying the aberrations 

of propagating Gaussian beams, but the unusual nature of the ideal 

wavefront might require a different architecture for the wave 

aberration function. Wave aberration theory deals with the difference 

between an aberrated wavefront and a reference sphere centered on the 

ideal focal point. For the case of a beam with an elliptical 

wavefront, the wave aberration function could consist of the 

difference between the aberrated wavefront and an ideal oblate ellipse 

whose "focus" is the plane of the waist and therefore at a fixed 

location. Another possibility would be to maintain the current wave 

aberration function definition but treat the difference between the 

reference sphere and the oblate ellipsoid as a first-order aberration, 

som~what in the same manner as Petzval curvature. In this situation, 

the reference sphere radius would be the vertex radius of the 

ellipse. This method has the distinct disadvantage of allowing the 

location of the center of the reference sphere to vary in a nonlinear 



fashion along the axis as the wavefront propagates. A third possi­

bility for the formulation of a wave aberration function would be to 

center the reference sphere on axis in the plane of the beam waist 

after the manner of Hopkins (1952]. The radius of the reference 

sphere would then be the length of the skew line to the ideal oblate 

ellipsoid. 
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In addition to redefining the wave aberration function, a beam 

with an elliptical wavefront and Gaussian amplitude distribution poses 

other questions in the study of aberrations. These issues include, 

but are not confined to, the effect of refraction by a plane, sphere, 

parabola, cylinder or ellipsoid on the beam; the effect of reflection 

from a plane, sphere, cylinder, parabola or ellipsoid; the effect on 

the beam wavefront and amplitude upon propagation through a gradient 

index medium, such as the atmosphere; and the effect produced by 

diffractive elements such as gratings and holographic elements. 

Summary 

These new Gaussian functions coupled with the skew-line 

geometrical model provide a starting point for a number of exciting 

new areas of research in both physical optics and geometrical optics. 

The physical optics areas include exact Gaussian-amplitude solutions 

to the vector wave equation and a reevaluation of the resonator 

integral problem in order to investigate the beam's origin. On the 

other hand, future research in geometrical optics includes the study ~ 
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of how aberrations affect the propagation of Gaussian beams in optical 

systems as well as in gradient index materials. In addition, the 

model can be expanded to include elliptical Gaussian beams in order to 

examine the propagation of Gaussian beams generated by semiconductor 

lasers. 



CHAPTER 8 

CONCLUSIONS 
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This research has generated an entirely new family of exact, 

closed-form solutions to the scalar wave equation in the oblate 

spheroidal coordinate system. Although we have used them here to 

model the Gaussian-amplitude fields that are, in general, produced by 

a laser resonator, their usefulness reaches beyond the confines of 

resonator physics. The (0,0) order of this family has a Gaussian 

amplitude distribution and a phase term which is basically a section 

of an oblate ellipsoid. This wave function has a singularity at the 

focal ring of the oblate spheroidal coordinate system in the same 

fashion that a spherical wave has a singularity at its origin. 

Indeed, the utility and fundamental importance of this new wave 

function can be compared with both a plane wave and a spherical wave. 

It represents a way to describe exactly the propagation of beams with 

a non-uniform amplitude, something which neither the spherical wave 

nor plane wave functions permit. Such beams can be generated by other 

means than a laser resonator, for example, incoherent, monochromatic 

beams on which a Gaussian apodization function has been imposed. 

Next, we expanded the derivation of this new class of 

functions to include all of the higher-order terms of these Gaussian 

amplitude expressions. To do so, we used an elegant transformation 
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introduced by Carson Flammer [1957] that. in effect. turns a spherical 

wave into a Gaussian beam. This is not a coordinate transformation 

but allows for a transmutation from one real coordinate system (the 

prolate spheroidal coordinate system) to another (the oblate spher­

oidal coordinate system) by changing the nature of two coordinate 

parameters. This is a very powerful technique and. judging from what 

it allows us to do in this problem. should be investigated further. 

especially in the area of diffraction theory. 

In addition to the derivation of this new family of solutions 

to the scalar Helmholtz equation. we have developed a geometric~l 

model for the (0.0) order. The purpose of this model was to provide 

physical insight into the various mathematical terms that appear in 

the expression. Specifically. we used the skew line generator of a 

hyperboloid of revolution to mimic a geometrical-optical ray. A major 

limitation of the concept of a skew line as a ray is that the skew 

line is not the gradient of the suggested wavefront--an oblate ellipse 

with a Gaussian amplitude distribution. Another difficulty arises 

from the dual nature of the okew line. that is. that two skew lines of 

opposite twist can generate the same hyperbola. The concept is useful 

nonetheless and allows us to trace equal distances from one oblate 

ellipse to another just as the distance between two adjacent 

wavefronts is constant along their corresponding rays. The skew line 
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also permits an elegant interpretation to the phase term 

exp [-itan-l~ fry] as the sag of the oblate ellipse as measured along 

the skew line. This suggests that a fruitful setting for the study of 

Gaussian beams is not in a meridional plane despite the appearance of 

rotational symmetry. Rather, the use of a nonorthogonal coordinate 

system would more effectively permit the implementation of this model. 

Finally, a nonorthogonal coordinate system based on the skew 

line is presented as a more profitable environment in which to study 

this new family of wave functions. This coordinate system makes use 

of the double skew line generators of a single-sheet hyperboloid as 

coordinate curves on the hyperbola. The third coordinate curve is the 

oblate ellipse. Nonorthogonality need not be viewed as a dis­

advantage here since it is possible to revert to the orthogonal oblate 

spheroidal coordinate system by taking the sum and difference of the 

two skew line vectors. In the meantime, we have provided a rigorous, 

unambiguous framework for studying the propagation of Gaussian beams 

based on the simplicity of straight lines. 

This research provides a new solution to a very old problem in 

wave propagation. Furthermore, it has been interpreted against a 

background that supplies a considerable amount of physical insight 

into the wave phenomena. It is hoped that this combined approach will 

extend the usefulness of this research into new areas of wave 

propagation, diffraction, and scattering. 
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APPENDIX AI 

FIRST ORDER GAUSSIAN BEAM PROPAGATION 

USING SKEW LINE MODEL 



A number of techniques have been suggested and outlined for 

the first-order design and analysis of laser systems. That is, as a 

Gaussian beam propagates through a system of refractive or reflective 

elements, systematic methods exist for predicting beam and waist 

sizes, waist locations and wavefront curvatures (in the classical 

description). Unfortunately, most of these methods are unwieldy and 

difficult to use, thereby providing little insight into the behavior 

of the beam as it propagates through the system. 

Kogelnik (1965) developed a set of equations to describe the 

propagation and refraction of Gaussian beams based on the classical 

model. In particular, he derived the transformation law for the 

complex beam parameter q, discussed in Chapter 2. This law, called 

the ABCD law, allows one to trace Gaussian beams through any optical 

system defined by the elements A, B, C, and D of its ray matrix. 
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The transformation law for q leads to analogies between 

transmission line and laser beam problems. As a result, Gaussian beam 

behavior upon refraction and transfer can be represented graphically 

on a circle diagram similar to impedance charts, such as the Smith 

chart. Such a diagram was first proposed by Collins (1964) and Li 

(1964) and is shown in Figure A.l. Kogelnik and Li (1966) described 

the relationship between this circle diagram and q and cited related 

work on the same concept. 

Arnaud (1969, 1973, 1980) showed that a fundamental Gaussian 

beam propagating through an optical system c~n be generated by the 

rotation about its axis of a skew ray that obeys the laws of 
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Figure A.l The Gaussian beam chart 
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geometrical optics. The projections of this skew ray onto two 

perpendicular meridional planes form the real and imaginary parts of a 

complex ray, X(z). The modulus of X(z) equals the beam size at any 

point and the phase gives the on-axis phase of the beam in the clas-

sical description. The ability to represent a Gaussian beam by two 

rays provided a method of analyzing laser systems using ordinary ray 

tracing. 

A far more straightforward, insightful, and powerful method 

for investigating the behavior of Gaussian beams in an optical system 

was introduced by Shack (1982). This method, referred to hereafter as 

the WWo diagram, utilizes many of the same concepts introduced by 

Delano (1963) for use in the YY diagram, a technique for synthesizing 

optical systems. Both procedures trace a skew line or ray through an 

optical layout. In the case of the if diagram, this skew ray provides 

both marginal and chief ray information. It is similar to Arnaud's 

complex ray, X(z), in that the marginal and chief rays are the pro-

jections of the okew ray in two perpendicular meridional planes. The 

WWo diagram, on the other hand, traces the rectilinear generator of 

the Gaussian beam's hyperbolic envelope in terms of the beam 

parameters in the spherical Gaussian beam expression. 

The traditional scalar description of the fundamental mode of 

a Gaussian beam can be writtenl 

w f (, k2Ri(Z») - W2P(2
Z

) 1 (A. 1) u(p,z) = ~exp t-i\kZ - ~ + 



where u(p,z) represents the light amplitude, R(z) is the radius of 

curvature of the spherical wavefront, w is the radius of the beam 

where the amplitude is lie its on-axis value and z is the distance 

along the axis from the waist. Further., the phase term ell is given by 

-1 ell III tan z 
z 

o 

We also have the relationships, 

(z2 + z 2) 
R(z) = _____ 0_ 

z 

and, 

(A.2) 

(A.3) 

(A.4) 
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The beam parameters Zo and Wo are known as the Rayleigh range and beam 

waist respectively and are related by 

kw 2 
o z =--o 2 

(A.S) 

where k is the propagation constant of the medium. Equations (A.3) 

and (A.4) can also be written, 

w (z) 2 

(A.6) 
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Figure A.2 The skew line and optic axis projected onto a plane 



164 

Z a - R(z) 
----(~2~R~(Z~)~ 2 

(A.7) 

1 + kw2(z) 

The WWo diagram reduces the complexity of these equations by a simple 

and powerful graphical technique. 

The projection of the skew line and the axis of rotation onto 

a plane forms the basis of the WWo diagram. The result of this 

projection is shown in Figure A.2, where the axis appears as a point 

and becomes the origin of the diagram and the skew line occurs as a 

straight line. The shortest distance from the point to the line, that 

is, from the axis to the rectilinear generator, is a perpendi~ular and 

corresponds to the beam waist, WOo Some other point, B, on the skew 

line represents a different cross-sectional plane whose beam width w 

is the distance from that point to the origin (axis). Further, the 

length of the skew line from this arbitrary point to the beam waist is 

proportional to the actual axial distance between cross-sectional 

planes. Finally. the angle, AOB, formed by the const=uction lines, Wo 

and w, is the phase difference A~ between the spherical wavefronts 

of the beam at those points. It is also the twist angle a discussed 

in Chapter 3. 

To find the value of the proportionality constant m, let a= 

450 in Figure A.2. At this point, z c zo' w = VIwo and, 

mzo 
--- a sina (A.B) 

w 
'Substituting equation (A.5) into (A.B) leads to, 



w 
m ... ....2 .. 

z o 

2 
kw o 

(A.9) 

Note that the axial distance is proportional to the area of triangle 

AOB. That is, 
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z .. -
k 

(A. 10) 

The sign convention for the area is positive when the area is swept by 
.... 

the vector OB rotating clockwise about the origin. Area is therefore 

considered positive for negative a. 

A very useful but little known characteristic of Gaussian 

beams is the relationship between two surfaces whose wavefronts have a 

phase difference of 900 • These surfaces have radii of curvature that 

are equal and opposite such that the center of curvature of one lies 

on the surface of the other. Shack calls these "sister surfaces", and 

they are uniquely determined by the WWo diagram. Since they have a 

900 phase difference, any two perpendicular beam width lines possess a 

"sister" relationship. 

Two representative sister surfaces are shown in Figure A.3 

with its corresponding WWo diagram given in Figure A.4. The angle 

between W2 and WI is 900 so the sum of twist angles a1 and a2 must 

also be 900 • This leads to the requirement that the cotangent of 

al - a2 equal zero. The difference between the two twist angles is 

required to preserve the sign convention for negative distance. This 

condition can be expressed as 
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·1· z,----.... 
~-------d------------~ 

Figure A.3 Sister surfaces in a Gaussian Beam 

Figure A.4 sister surface representation on the WW 
diagram 0 



cot a 1 cot"2 + 1 

cotOJ. - cot~ 

The numerator in (A. 11) must equal zero or, 

_ 1 __ ....;;1:...-
tan a l tan a 2 

1 
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.. 0 (A.11) 

(A.12) 

Substituting Equation (A.2) into (A.12) results in an equation for 

zl and z2 in terms of the Rayleigh range where 

(A.13) 

We can now find expressions for Rl and R2 by substituting Equation 

(A.13) into (A~3). This manipulation results in 

R 0:::_ 

1 0::: - (z - z ) 
1 2 

(A.14) 

We note by inspection of figure A.3 that the value of R2is defined to 

be: 

(A. IS) 

Therefore, from (A.14) and (A. IS) we see that 

(A.16) 



Writing Equation (A.4) explicitly for planes land 3 gives 

W1 · [ 2:0 (1 + ::: ) (2 

W2· [ 2:0 (1 <:~ ) r: 
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(A.l7 ) 

Multiplying Wl and W2 and utilizing the expression for zo2 given in 

Equation (A.l3), we see that 

Substituting (A.l4) and (A.l3) into (A.l8) yields 

-2R 1 
-k-

Finally, similar manipulations of Equation (A.l7) shows that 

(A.l8) 

(A.l9) 
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I 

W 2 
1 

+ 1 
W 2 

2 

1 
"'-

W 2 
(A.20) 

o 

From the above equations, particularly (A.19), it becomes apparent 

that the radius of curvature at any point in the beam can be obtained 

using sister surface relationships. 

After applying this development to the WWo diagram in Figure 

A.4, note that the area of triangle P20PI is given by, 

(A.21) 

where d is the distance between the sister surfaces and d = 

IR21 '" IRII. Equation (A.21) is a restatement of (A.19) such that, 

(A.22) 

The radius of curvature at any point in the beam can be obtained 

graphically in a simple and straightforward manner. 

The WWo diagram can now be expanded for use in predicting the 

first-order properties of a Gaussian beam as it propagates through an 

imaging system. At a thin lens, the beam widths of both input and 

output beams must match and the wavefront curvature of one is con-

verted to the wavefront curvature of the other. The lens can be 

depicted on the diagram as a point which "bends" the input skew line 

in accordance with the power ~ of the lens. The thin lens equation is 



, 
n 
l' 
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(A.23) 

where 1 is the distance from the lens to the "object" plane, 1,' is the 

distance from the lens to the conjugate "image" plane and nand n' are 

the refractive indices in the object and image space respectively. As 

shown in Figure A.5, if 1, and 1,' are made equal to Rand R' 

respectively, the conjugate (object and image) planes are sister 

surfaces to the input and output surfaces at the lens. Since these 

surfaces have an overall phase difference of 1800 , one can conclude 

that a straight line through the origin identifies a pair of conjugate 

planes. 

Translating this layout to the WWo diagram in Figure A.6, we 

note that the lens is represented by a point and has a "clear 

aperture" equal to twice the beam width Wl .. Wl'. The lens "bends" 

the input skew line and in doing so generates an output beam with 

different characteristics (divergence angle, waist size and Rayleigh 

range) from the input beam. Since a straight line through the origin 

corresponds to conjugate planes, input and output beam waists can 

never be conjugate in a focal system. That is, with any kind of 

imaging system an input beam waist can never be imaged into the output 

beam waist. Because of this, if a beam waist resides in the front 

focal plane of a lens, the output beam waist will appear in the rear 

focal plane. 



~--------'----------~··~----------t'--------~ 

Figure A.S Transformation of a Gaussian beam by a lens 

Figure A.6 Lens transformation on the WW diagram 
o 
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The focal plane construction in the WWo diagram is very 

similar to that of the YY diagram. Figure A.7 demonstrates that the 

line connecting the front focal plane F of lens Ll with the origin is 

parallel to the output beam. Likewise, the line connecting the rear 

focal plane F' to the origi~ is parallel to the input beam line. If 

the input and output beams have a 900 phase difference, their 

construction lines will be perpendicular. As a result, beam waists 

f'Jr both the input and output beams reside in the front and rear focal 

planes respectively. 

Expanding on this insight, we can find the locus of all 

possible beam waists that lie in the front and rear focal planes of a 

lens. As shown in Figure A.B, we construct a circle of diameter equal 

to the beam width at the lens and containing the lens element. The 

left-hand semicircle is a trace of all possible beam waists in the 

front focal plane of the lens; the right-hand semicircle traces the 

output beam waists in the rear focal plane. The locus of all possible 

beam waists is a circle because the inscribed figure, a rectangle, 

aluays has the same diagonal that is equal to the circle diameter. 

The circle construction also leads to a particularly simple 

method of predicting the size of a beam on a target. The axial 

distance from a lens element to a target is proportional to the 

triangular area swept out on the WWo diagram. In Figure A.9, the lens 

element is Ll with a beam width WI and the target lies somewhere on 

the line T. The distance from the lens to the target is given by 
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d .. (A.24) 

Since 1 and WI are constant, d is constant, and we conclude that the 

locus of all points equidistant from the lens is a line parallel to 

the line connecting the lens to the origin and a distance 1 away; The 

target is designated as point TI, and the beam size on the target is 

WT• The line connecting Ll to Tl represents the output beam formed 

by the lens and hitting the target. This beam has a waist that occurs 

between the lens and the target. The distance locus is outside the 

beam waist locus and it becomes apparent that the beam waist will 

always be smaller than the smallest beam size on the target. 

Figure A.IO demonstrates the situation for locating a beam 

waist on the target. The distance locus now falls inside the beam 

waist locus. Since the line T intersects the circle in two places, 

two beam waists, of different widths, can be located on the target. 

The smallest possible beam width on the target will be of width 1 when 

the target occurs at Tl in Figure A.lO. The dashed line from Ll to Tl 

represents the output beam in this situation and WOI, the beam waist. 

Note that even here the smallest beam size on the target will be 

larger than the corresponding beam waist. Finally, the maximum range 

at which a beam waist can occur on the target happens when the 

distance locus T is tangent to the circle. In this situation, 1"" 

Wl/2 and~ 
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Figure A.9 Distance locus for target beyond beam waist 
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Figure A.IO Configuration for locating beam waist on target 
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2 

2 2 1 2 (A.25) 

Figure A.ll illustrates the procedure for producing a spot of 

a certain size in the output beam of a lens. This will appear as a 

circle around the origin with a radius equal to the desired beam 

width. A beam waist will occur where the spot size locus and beam 

waist locus intersect. On the other hand, an output beam size equal 

to the beam size at the lens shows up as the dashed circle around the 

origin in Figure A.Il. This circle has a radius equal to the diameter 

of the beam waist locus. The maximum distance from the lens at which 

this beam size occurs is designated as R on the diagram and is given by 

(A.26) 

This is the maximum range for which the beam can be kept as restricted 

as possible for as long as possible. For a target located anywhere on 

this dashed circle, the waist for the beam between the lens and the 

target will always occur halfway between the two. 

The WWo diagram has a major drawback in terms of scaling. It 

can be a very effective tool only when the beam or element size is on 

the order of the beam waist. This results from the value of the 

Lagrange invariant which determines the diameter to length scaling of 

an imaging system. In the case of Gaussian beams, the Lagrange 

invariant is 
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(A.27) 

Since we are not free to change the beam wavelength, neither can we 

change the scaling. Furthermore, the axes of the WWo diagram are not 

separable so we cannot rescale at will. However, in some cases the 

beam waist is indistinguishable from the sister surface, permitting 

the use of orthogonal, and therefore rescaleable, axes. Even with 

this limitation, however, the WWo diagram exhibits significant 

advantages in simplicity, clarity, and insight over other methods of 

Gaussian beam propagation. 



APPENDIX Br 

PROOF THAT AN ARC OF AN OBLATE ELLIPSE IS 

PERPENDICULAR TO ITS ATTENDANT SKEW-LINE FAN 
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The parametric equations of equation (4.15) describe the arc 

PA in Figure 4.7 when a and ~are held constant. These equations are 

therefore functions of S only and have the form 

y(S) ... d sinO sine ~+ a) • 
cosa 

z(S) = d tana cosS 

where we have made the substitutions for sinh~ and coshp given in 

Equation (4.14). 

(B.l) 

The angle ~ is measured from the x axis to the line segment ON 

in the plane of the waist only. The azimuthal angle in any other 

plane perpendicular to the z axis is given by ~± a. The angle a 

determines the ellipse of interest and the length of the skew line. 

The tangent to the elliptical arc is given by 

t = ar ... ax(S)~ + ay(o) ~ +az(O) A 
de ao as Y as z • (B.2) 

where ~. 9. and ~ are Cartesian unit vectors. Differentiating with 

respect to a yields 

t ... dcos S cos( ~ ± a) ~ + dcos8sin( ~ ± a) A _ dtana sinS ~ • 
cos a cosa y (B.3) 

The + or - sign for a determines whether the arc in question is for a 

counterclockwise (+a) or clockwise (-a) twist. 
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-+-The vector representation for a skew line s, is given by 

~ • (x' - x) ~ + (y' - y) 9 + (z' - z) ~ . (B.4) 

In the plane of the waist, a· 0 and the parametric Equation of (B.l) 

become 

x .. dsin8 cosq, 

y • dsin8 sinq, (B.S) 

z • 0 . 

On the elliptical arc, the coordinates of a point are x', y', and z' 

and is described by the parametric equations 

x' (8) • 

y' (8) • 

dsin8 cos(q, ± a) 
cosa 

dsin8 sin(q, ± a) 
cosa 

z' (8) .. dtana cosS 

Substituting Equations (B.S) and (B.6) into (B.4) gives 

-+- 1\ 1\ A 
S • ;dtana sinS sinq,x±dtana sin8 cosq, y + dtana cos8 z-. 

(B.6) 

(B.7) 
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-l-The magnitude of s is dtana , the length of the skew line. Note that 

regardless of the choice of a, the magnitude of the' ~ and 9 
components are opposite in sign. 

Taking the dot product of t and ~ leads to 

-l-.... d2 sinS cosS 
t • s .. T tana a cos cos(¢± a)sin¢ 

(B.8) 

2 2 - d tan a sinS cosS • 

Simplifying terms results in 

t . it .. d2 ~ sinS cosS [+ sin¢ cos( ¢ ± a) ± cos¢ s!n(¢ ± a) - sin a] • 
cosa (B.9) 

Next, we expand the term in brackets to find that 

.. 

d2 ~ sinS cosec +sin¢ (cos¢ coscy + sin¢ sina) cosa 

±cos¢(sin¢ cosa ± cos¢ sina) - sinal (B.IO) 
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and finally 

(B.ll) 

Therefore, the skew line is perpendicular to the elliptical arc PA. 
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APPENDIX C: 

REFLECTION OF A SKEW-LINE RAY FROM AN ELLIPTICAL MIRROR 
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In geometrical optics. the laws for reflection are: 

I. The reflt~cted ray lies in the plane formed by the incident ray and the 

surface normal. 

2. The reflected ray forms the equal but opposite angle to the normal as the 

incident ray. 

Since the reflective surface is an oblate ellipse. its normal is simply the unit normal 

for the oblate ellipsoid? in the oblate spheroidal coordinate system. The three unit 

normals for this system are given by 

" ~ -

ff+T v'F+T ~ 
~ - -71 cos(ifJ ± O!) x - 71 sin(ifJ ± O!) y + ~ z . (C.I) 

~ - -sin(ifJ ± O!)x + cos(ifJ ± O!)y • 

where X. y. and z are the unit vectors in the Cartesian coordinate system. We 

have made use here of the definition of the azimuthal angle ifJ ± O! in a plane other 

than the plane of the waist. Furthermore. we shall employ the definitions for tanO! 

and cosO! given in Eq. (4.14). 

Since the incident ray has the same trajectory as a skew line. its vector 

representation can be found from Eq. (B.7). For a skew-line trajectory with a 

clockwise twist. (-O!). the incident ray is the unit vector 

u - sinO sinifJ x - sinO cosifJ y + cosO Z . (C.2) 

" In order to find the plane containing ~ and U. it suffices to find the normal to 

both ? and U. since this will also be the normal to the plane containing the two 

" vectors. The unit normal can be found by taking the cross-product of ~ for a 
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negative O! and 0 and is given by 

" o )( ~ 
/0 )( E/ 

-- (C.3) 

This is simply ij. 

Next. we calculate the angle between the incident ray and the surface normal 

which is 

" [ • 2 • 20 20 ] COS-I[O • ~] _ cos-l sm O! sm + cos 
cosO!Jtan20! + cos20 

(C.4) 

Reduction of the term on the right leads to 

(C.S) 

In determining the reflected ray. Q. we know that it must lie in the plane 

" " formed by u and ~ and must therefore be perpendicular to ij. Also. the angle Q 

makes with E must be equal and opposite to cos-l(fi . ~). Expressed in terms of a 

dot product. this latter condition is 

Q • E - - 0 . E (C.6) 

Finally. the angle formed by 0 and Q must be twice that of 0 E. This condition 

can also be expressed in terms of a dot product as 

"1\ ,,"-
U • v-I - 2[u . ~J2 . (C.7) 

Taken together. these conditions will produce the three direction cosines of the 

vector Q. 

If the vector v is given by 

Q - ax + by + cz . (e.8) 

then the three simultaneous equations to find a. b. and care 

-cosO cos(cp - O!)a - cosO sin(cp - O!)b + sinO! sinO c .. 0 • 
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sin~ sinO cos(cP - ~)a + sin~ sinO sin(cP - ~)b + cosec - -sin2~ - COS20COS2~. (C.9) 

sinO sincP a - sine coscP b + cosO C .. I - 2 (sin2~ + cos20 COS2~) . 

The resultant reflected ray is given by 

Q - sine sin(cP - 2~)x - sinO cos(cP - 2~)y - cosez • (C.IO) 

which is a skew-line vector on the same hyperbolic envelope as 0 pointed in the 

direction of the waist with endpoint at the point of reflection. 
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